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Abstract

Given a friendship network, how certain are we that Smith

is a progressive (vs. conservative)? How can we propagate

these certainties through the network? While Belief propa-

gation marked the beginning of principled label-propagation

to classify nodes in a graph, its numerous variants proposed

in the literature fail to take into account uncertainty during

the propagation process. As we show, this limitation leads to

counter-intuitive results for even simple graphs. Motivated

by these observations, we formalize axioms that any node

classification algorithm should obey and propose NetConf

which satisfies these axioms and handles arbitrary network

e↵ects (homophily/heterophily) at scale. Our contributions

are: (1) Axioms: We state axioms that any node classi-

fication algorithm should satisfy; (2) Theory : NetConf is

grounded in a Bayesian-theoretic framework to model uncer-

tainties, has a closed-form solution and comes with precise

convergence guarantees; (3) Practice: Our method is easy to

implement and scales linearly with the number of edges in

the graph. On experiments using real world data, we always

match or outperform BP while taking less processing time.

1 Introduction

Suppose Smith has to choose between iOS and android
phones based on inputs from Alice and Bob (Figure 1).
Alice (pink/dotted), a stubborn tech-geek, after some
research believes that iOS is (60-40) better than an-
droid. Non-techie Bob (green/solid) favors android (65-
35). Which phone would Smith buy? If Smith takes
into account only friends’ beliefs, he would be swayed
by Bob towards android; however, considering their cer-
tainty/stubbornness, he would choose iOS. In an online
setting, knowing the browsing and buying patterns of
Alice and Bob, what ad (iOS/android phone) should
we show Smith? The fundamental question is: how can
we capture these notions of certainty/stubbornness and
leverage them to classify nodes in a network?

Network e↵ects appear in many real life scenar-
ios, usually as homophily (“birds of a feather flock to-

gether”), or heterophily (“opposites attract”) and oc-
casionally a combination of both. Knowing the nature
of network e↵ects that apply in a given scenario, we
may reason from observed training cases directly to test
cases; this is called transductive inference. Belief Prop-
agation (BP) [26] has been successfully used to perform
such inference in numerous areas [2, 6].

However, BP still su↵ers from one big limitation:
it does not take the uncertainty of beliefs into account.
Mathematically, BP computes point estimates only, as
opposed to full distributions capturing the uncertainty
in the beliefs. Thus, when propagating information,
BP treats certain and uncertain nodes with equal
weight, resulting in counter-intuitive responses, like
recommending android to Smith in Figure 1.

The intuition pays o↵, as is seen from Figure 1b,c.
Our method, NetConf (NETwork e↵ects with CON-
fidence) takes certainty into account, and produces a
sound ranking of database authors (from the DBLP co-
authorship network – see Section 5 for more details).

The list of top five authors using NetConf (Fig-
ure 1b) includes authors who wrote many milestone
database papers and collaborated with many well-
known DB authors. In contrast, BP (Figure 1c) ignores
certainty and results in numerous authors having per-
fect belief score and tying in first place; for several of
them we could not find the h-index (‘dash’). Informally,
the problem we address is the following:

Problem 1. Node classification (with certainty)

Given a graph G = (V, E), labels1 lv 2 {1, 2, . . . , k}
for a subset of the nodes v 2 V (with their uncertainties)
and the nature of network e↵ects (e.g., homophily),

find the probability (belief/leaning) bu(i) that node
u has label i along with a measure of certainty (stub-
bornness).

1
We use the terms label and class interchangeably throughout

the paper.
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Author Score H-index

Michael J. Carey 2.23 48
Rakesh Agrawal 2.20 96

Jiawei Han 2.00 139
Hamid Pirahesh 1.94 40
David J. DeWitt 1.84 81
Serge Abiteboul 1.80 77

Author Score H-index

Jiawei Han 1.00 139
Annie W. Shum 1.00 -
Werner Kießling 1.00 -
Xiaofang Zhou 1.00 36

Bertram Ludäscher 1.00 45
Amarnath Gupta 1.00 -

(a) (b) (c)

Figure 1: (a) Motivation: Who sways our opinion? Alice (certain, 60-40 iOS) or Bob (uncertain, 65-35 android)?
(b) Top DB authors using NetConf (c) Top DB authors using BP (ties broken randomly). H-index was obtained
from google scholar or http://web.cs.ucla.edu.

The main ideas behind our method are to: (i) model
beliefs as Dirichlet distributions to capture uncertainty
and (ii) use multinomial counts as messages to propa-
gate these uncertainties along the edges of the network.
Our contributions are as follows:
• Theory : We propose axioms that every network-
e↵ect method should obey; and a Bayesian theo-
retic model for uncertainty. These lead to our pro-
posed NetConf, which has a closed-form solution
(Theorem 4.2) and precise convergence guarantees
(Theorem 4.3).

• Practice: NetConf is more accurate than BP, as
we show with real data; it scales linearly with the
number of edges and is usually faster than BP.

Reproducibility: The datasets we used are already
public; our source code is available at http://www.cs.
cmu.edu/

~

deswaran/code/netconf.zip.
The outline of the paper is typical (background,

method, analysis, experiments and conclusions).

2 Background: Belief Propagation

Belief propagation (BP, in short), introduced by Judea
Pearl [19] is a general technique to perform approximate
inference in various graphical models such as Bayesian
networks, pairwise Markov random fields and factor
graphs [26]. Due to our interest in solving the node
classification problem in an undirected graph, we will
restrict our discussion of BP to pairwise Markov random
fields.

The core idea in BP is for each node u to maintain
its belief bu, a k-dimensional vector (where k is the
number of classes) in which the ith entry indicates the
probability that node u belongs to class i. The belief of a
node evolves as it receives messages from its neighbors.
A messagemvu sent from v to u encodes v’s belief about
what class the node u should belong to.

0.9 0.1

0.1 0.9

Conservative

ConservativeProgressive

Progressive

(a)

0.5 0.5

0.5 0.5

A B

B

A

(b)

0.2 0.8

0.8 0.2

Silent

Silent Talkative

Talkative

(c)

Figure 2: Example edge compatibility matrices H for
a binary class problem. (a) Homophily: friendship (b)
No network e↵ects: blood group (c) Heterophily: dating

Beginning with prior beliefs eu for each node u 2
V, the algorithm iteratively propagates messages and
computes beliefs guided by the following update rules.

bu(i)  1

Zu
eu(i)

Y

v2N (u)

mvu(i)(2.1)

mvu(i)  
kX

j=1

H(i, j)ev(j)
Y

w2N (v)\u

mwv(j)(2.2)

Here, Zu is a normalization constant which ensures
that the beliefs sum up to 1. The k⇥ k matrix H is the
edge potential or compatibility matrix, which captures
the a�nity between the classes. The larger an entry
H(i, j), the more likely a node with class i connects to
a node with class j. Thus, it can encode any kind of
network e↵ects such as (a) homophily (Figure 2a), (b)
heterophily (Figure 2c) or (c) a combination there of,
for more than two classes.

Further, observe that, when v sends a message to u,
it does not take into account the message it previously
received from u. This is known as echo-cancellation.

The method converges to exact marginals only in
graphs without loops [19] and in certain special cases
[15]. In the presence of loops, the algorithm is not
guaranteed to converge to the true marginals, or even
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BP

NetConf

P

10

33 Q

10

100 100

Figure 3: Ratio vs. Di↵erence: BP gives a strong
blue prediction for Q even though Q has an fairly equal
number of red and blue neighbors.

converge at all. However, in practice, loopy belief
propagation has been found to approximate the true
marginals well [16] in a variety of applications [5, 9, 18].

3 Axioms

Figure 1a demonstrated that the direct application
of BP (or similar algorithms) to node classification
problems in a graph often leads to counter-intuitive
results. This phenomenon is common; an another
example is Figure 3. BP’s results depend on the
di↵erence in the number of blue and red neighbors, but
not the actual ratio, as one would desire.

The key to address these problems is to quantify
the uncertainty in beliefs using distributions. In this
section, we set up three axioms that our proposed
method, operating on belief distributions, must obey.

Axiom 3.1. (No network e↵ects) In the absence of
network e↵ects, i.e., when the class labels are indi↵erent
to each other, the final belief distribution of every node
should match its prior belief distribution.

Axiom 3.2. (Certainty pulls) In the presence of net-
work e↵ects, all else being equal, neighbors with more
certain belief distributions have a greater influence on
a node’s belief distribution. Informally, stubborn neigh-
bors are more convincing.

Axiom 3.3. (Certainty pools) In the presence of
network e↵ects, all else being equal, an increase in cer-
tainty of a neighbor’s belief distribution makes a node’s
belief distribution more certain. Informally, stubborn
neighbors make you more stubborn.

As we will see later, Eq. (4.7) ensures that our
proposed NetConf obeys Axiom 3.1, by propagating
flat (uninformative) distributions. Our update rules to-
gether ensure that a node with high certainty sends a
heavy-weight (as measured by L1 norm) message ac-
cording to Eq. (4.8), which in turn has a greater influ-
ence on its neighbors’ beliefs (Axiom 3.2) and increases

Entity/Operator Notation
Scalar lowercase, italics; e.g., n, k
Vector bold, lowercase, without tilde; e.g., bu, ĕu
Distribution bold, lowercase, with tilde; e.g., b̃u, m̃vu

Matrix bold, uppercase; e.g., B̆,H
Vectorization vec(.)
Set calligraphic, capital; e.g., V, E
Kronecker product ⌦
Vector/matrix entry Not bold; e.g., bu(i), H(i, j)
Spectral radius ⇢(.)

Table 1: Notation

Symbol Meaning

n |V|, #nodes in the graph G = (V, E)
k number of classes

u, v, w nodes
i, j classes

bu, eu k-dim final, prior belief vectors of u
mvu k-dim message vector from v to u

b̃u, ẽu final, prior belief distributions of u
m̃vu message distribution from v to u

b̆u, ĕu k-dim final, prior D-belief vectors of u
m̆vu k-dim D-message vector from v to u

B̆, Ĕ n⇥ k final, prior D-belief matrices
vec(B̆), vec(Ĕ) nk ⇥ 1 vectorized matrices B̆, Ĕ

xu k-dim point belief from b̆u or ĕu
� continuous potential function
H k ⇥ k compatibility matrix
M k ⇥ k modulation matrix
A n⇥ n adjacency matrix
D n⇥ n diagonal degree matrix

Table 2: Nomenclature

their certainty (Axiom 3.3) according to Eq. (4.9).
These are further illustrated using an example in Sec-
tion 5.1. We now describe our approach.

4 Proposed Approach

In Figure 1, Alice is lukewarm towards iOS but very
certain about her opinion, while Bob is the reverse.
Thus, we need to capture both the leaning/belief of a
node (e.g., preference to iOS vs android) as well as its
stubbornness/certainty. At a high level, the heart of our
idea is to use a Beta distribution with two parameters
(↵+ 1, � + 1) as depicted in Figure 1. The leaning of a
node is the ratio ↵

↵+� , while its certainty is the height
of the spike of the Beta distribution captured through
↵ + �. For a multi-class case, we generalize this to the
Dirichlet distribution. Our approach is based on the
following steps:
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• Dirichlet Beliefs: The D-belief (Dirichlet-belief )
b̆u of a node u is a k-d vector of reals which
parameterize its belief distribution.

• Multinomial Messages: The D-message m̆vu

from node v to u is a k-d vector of multinomial
counts.

• Network e↵ects: The modulation matrix M is
derived carefully from the compatibility matrix H
(to obey Axiom 3.1).

• NetConf update rules: We derive update rules
(Eq. (4.8) and Eq. (4.9)) in terms of D-beliefs, D-
messages and modulation matrix from Yedidia’s
update rules (Eq. (2.1) and Eq. (2.2)).

• Closed-form solution: From these update rules,
we derive NetConf’s recursive matrix equation
(Theorem 4.1), compute the closed-form solution
(Theorem 4.2), and provide necessary and su�cient
convergence guarantees (Theorem 4.3).
Table 1 summarizes the notation and Table 2 lists

the frequently used symbols. The rest of the section
describes the above steps in detail.

4.1 Dirichlet beliefs. A principled way to model
the uncertainty in k-d beliefs is through a distribution
having a k � 1-d simplex as support, namely, the
Dirichlet distribution. Its probability density function

is given by: p(x;↵) /
kQ

i=1
x↵i�1
i . The concentration

parameters ↵1, . . . , ↵k are k real-valued numbers which
control the spread of the distribution in space. Let us
use D-belief (b̆u) (analogously, D-prior ĕu) to denote
the parameters of u’s belief distribution minus 1.

b̃u(xu) = Dir(xu; b̆u + 1)(4.3)

ẽu(xu) = Dir(xu; ĕu + 1)(4.4)

As the scale of D-belief increases, the distribu-
tion begins to get peakier (certain) around its mean;
hence, we may quantify the certainty in belief as
Certainty(b̆u) =

P
i b̆u(i). Our richer model for beliefs

maintains only k-parameters at every node, similar to
BP.

4.2 Multinomial messages. If beliefs are distribu-
tions, how should we characterize messages? The key
lies in interpreting Eq. (2.1) as an equation that guides
Bayesian posterior estimation:

(4.5) b̃u(xu) / ẽu(xu)
Y

v2N (u)

m̃vu(xu)

We hypothesize that the message distributions are
the likelihood of observations made by a node about
its neighbors. For tractability of estimation (using con-
jugacy of Dirichlet-Multinomial distributions), we let

observations be multinomial counts. Accordingly, the
message distribution m̃vu from v to u is the likelihood
of the message counts (D-message m̆vu) under the be-
lief distribution b̃u(xu) of the node which receives the
message:

m̃vu(xu; m̆u) /
kY

i=1

xu(i)
m̆u(i)

Plugging this in Eq. (4.5), we derive NetConf’s first
update rule:

b̆u  ĕu +
X

v2N (u)

m̆vu

4.3 Network e↵ects. Since now messages and be-
liefs are (continuous) distributions instead of vectors,
the message update rule in Eq. (2.2) needs to be
adapted. We use a continuous potential function analo-
gous to the compatibility matrix H in the discrete set-
ting.

(4.6)

m̃vu(xu) /
Z

xv

�(xu,xv) ẽv(xv)
Y

w2N (v)\u

m̃wv(xv)

| {z }
˜

bv\u

Suppose the compatibility matrix H for a two

class problem is

✓
0.5 + ✏ 0.5� ✏
0.5� ✏ 0.5 + ✏

◆
where ✏ indicates the

nature of network e↵ects. ✏ = 0.5 is perfect homophily;
✏ = �0.5 is perfect heterophily; ✏ = 0 is the case of
no network e↵ects. Intermediate positive and negative
values correspond to varying degrees of homophily and
heterophily respectively.

Denote with �✏ the (unknown) continuous potential
function that reflects the corresponding scenario for a
specific value of ✏. Let b̃v\u be the echo-cancelled
belief distribution from Eq. (4.6). It is desirable that
the checkpoints in Table 3 hold, as also illustrated
in Figure. 4. The intuition is as follows: (1) for no
network e↵ects, the message should not prefer any belief
value over the other (flat distribution); (2) for perfect
homophily, a node believes about its neighbors what
it believes about itself; (3) for perfect heterophily, a
node believes about its neighbors the opposite of what
it believes about itself.

Despite the mathematical niceness of the above for-
mulation, it has proved hard to define a potential func-
tion that (i) preserves the functional form of message
distributions, (ii) satisfies the checkpoints in Table 3,
and (iii) ensures e�cient computation. Thus, we pro-
pose to approximate the continuous potential function
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(a) Echo-cancelled (b) m̃vu is flat for no (c) m̃vu ⌘ b̃v\u, for perfect (d) m̃vu ⌘ flipped b̃v\u, for
belief distribution b̃v\u network e↵ects (✏ = 0) homophily (✏ = +0.5) perfect heterophily (✏ = �0.5)

Figure 4: Understanding the corner cases of the continuous potential function: A sample 2-class echo-cancelled
belief distribution and the corresponding message distributions for the di↵erent network e↵ects

Network e↵ects ✏ Checkpoint for continuous potential function � Modulation matrix M Geometry (Figure 5)

None 0
R
xv

�✏=0(xu,xv)b̃v\u(xv) / 1 M = 0 Point O (origin)

Perfect homophily 0.5
R
xv

�✏=0.5(xu,xv)b̃v\u(xv) / b̃v\u(xu) M = I Point A (identical to b̆v\u)

Perfect heterophily -0.5
R
xv

�✏=�0.5(xu,xv)b̃v\u(xv) / b̃v\u(1� xu) M =

✓
0 1
1 0

◆
Point B (image about x = y)

Table 3: NetConf corner cases of network e↵ects: Checkpoints for � and corresponding instantiations of M

� that operates on the distributions by a modulation
matrix M that operates on the corresponding hyperpa-
rameters. Following the update rule of the belief distri-
bution, the message update for the hyperparameters is
defined by m̆vu  M(ĕv +

P
w2N (v)\u

m̆wv).

To formally define the modulation matrix M, let
us visualize the D-beliefs and D-messages for a two
class problem as points on a 2D plot, as shown in
Figure 5. The x-axis represents the D-score of a belief
or message for the first class, while the y-axis represents
the D-score for the second class. Let A represent the
D-scores of the echo-cancelled belief of node u, i.e.,
b̆v � m̆uv. The three conditions on � determine how
the modulation matrix M is defined for the corner cases
of ✏ = 0.5, 0,+0.5 – these correspond to points A, O
and B in Figure 5 respectively (see also Table 3). For
any intermediate positive value of ✏, we propose a linear
interpolation and transmit the D-message lying on the
line AO. Similarly, for intermediate negative values of
✏, the D-message takes a value lying on OB. Hence, the
modulation matrix for a two-class problem is given by

M = 2

✓
L(✏) L(�✏)
L(�✏) L(✏)

◆

where L(.) is the Lasso operator defined as L(x) = x for
x > 0, and 0 otherwise. This can be generalized to the
k-class case as:

(4.7) M =
k

k � 1
L

✓
H� 1

k

◆

NetConf obeys Axiom 3.1: In the absence of
network e↵ects, M = 0. This makes all message counts

!
!"#$,&'().+!

!"#,%&'(.*!
!

!"#,%&' ! D"score(for(class(1

D"
sc
or
e(f
or
(cl
as
s(2

B

A

O

(perfect heterophily)

(perfect homophily)

(no network effects)

!
˘ !

!
˘ !

!
˘ !

CAMLP

NETCONF

Figure 5: Illustration of modulated messages as a
function of ✏: Proposed NetConf follows blue arrow
(as ✏ increases from -0.5 to +0.5) and sends (0,0)
message for no network e↵ects. Messages according to
our competitor CAMLP [25] follow the red arrow and
violate Axiom 3.1 (no network e↵ects).

zero (i.e., message distributions flat), hence leaving the
belief distributions of all nodes unchanged.

4.4 Putting things together - NetConf. The
update rules for NetConf, in terms of the modulation
matrix M (Eq. (4.7)) can be summarized as:

b̆u  ĕu +
X

v2N (u)

m̆vu(4.8)

m̆vu  M(ĕv +
X

w2N (v)\u

m̆wv)(4.9)
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NetConf obeys Axiom 3.2 and Axiom 3.3:
A node with high certainty sends a heavy-weight (as
measured by L1 norm) message due to Eq. (4.8). This
increases its influence on its neighbors’ beliefs (Ax-
iom 3.2) and hence their certainty (Axiom 3.3) accord-
ing to Eq. (4.9).

While in principle one can simply invoke the previ-
ous two update equations several times until the mes-
sages and beliefs converge, we infer a more e�cient vari-
ant that avoids computing messages at all. We will use
the following notation. Let G be an unweighted undi-
rected graph on n nodes, with adjacency matrix A. Let
D be the diagonal degree matrix, where D(q, q) = dq,
the degree of the qth node. Also, suppose that k is the
number of classes. Then, we construct the n⇥k D-belief
matrix B̆ (and correspondingly, the D-prior matrix Ĕ),
by stacking D-belief (resp., D-prior) row vectors of all
nodes one below the other. Now, we are ready to state
our main theorem.

Theorem 4.1. (NetConf) For matrices A, D,
B̆, Ĕ and M described as above, the final D-beliefs
of nodes are given by the equation system:

(4.10) B̆ = Ĕ+ (AB̆M�DB̆M2)(I�M2)�1

Proof. Rewriting the D-message update rule from Eq.
(4.9) in terms of D-belief b̆u, we have

m̆vu  M(b̆v � m̆uv)

Plugging the message update rule for m̆uv into the
above yields

m̆vu  M(b̆v �M(b̆u � m̆vu))

At steady state, we can replace the update sign with an
equality and solve for m̆vu, in terms of the steady state
D-beliefs b̆u, b̆v. This gives us

m̆vu = (I�M2)�1(Mb̆v �M2b̆u)(4.11)

Now, the steady state D-beliefs can be calculated from
the steady state D-messages using Eq. (4.8).

b̆u = ĕu + (I�M2)�1
X

v2N (u)

(Mb̆v �M2b̆u)

Rewriting this in matrix form using the previously
defined matrices (B̆, Ĕ,A and D) yields Eq. (4.10).

As shown, Eq. (4.10) operates on beliefs only; the
messages are not explicitly required. In practice, we can
use the above result to compute the final belief matrix
via an e�cient iterative update of the following form:

(4.12) B̆(t+1) = Ĕ+(AB̆(t)M�DB̆(t)M2)(I�M2)�1

Weighted edges: Although our proof assumes un-
weighted edges, it can be easily shown that all our the-
orems hold for weighted adjacency matrix A as well.

4.5 Closed-form solution and convergence Be-
fore providing theoretical guarantees for our algorithm,
we review two useful matrix algebra concepts.

Definition 4.1. (Matrix Vectorization [12])
Vectorization of an m ⇥ n matrix converts it into a
mn⇥ 1 vector given by:

vec(X) = [x11, . . . , xn1, x12, . . . , xn2, . . . , x1n, . . . , xnn]
T

where xij denotes the element in the ith row and jth

column of matrix X.

Lemma 4.1. (Roth’s column lemma [12]) For any
three matrices X,Y and Z,

vec(XYZ) = (ZT ⌦X)vec(Y)(4.13)

where ⌦ is the Kronecker product [12].

Theorem 4.2. (Closed Form Solution) For
matrices A, D, M and vectors vec(B̆) and vec(Ĕ)
described as above, the closed form solution for
D-beliefs is
(4.14)
vec(B̆) = (I�(MM̂)T⌦A+(M2M̂)T⌦D)�1vec(Ĕ)

where M̂ = (I�M2)�1.

Proof. The theorem can be proved by vectorizing
Eq. (4.10) and applying Roth’s column lemma.

Theorem 4.3. (Fixed Point and Convergence)
The iterative updates in Eq. (4.12) converge to a
unique fixed point, for arbitrary initialization of
the D-belief matrix, if and only if the spectral norm
of (MM̂)T ⌦A+ (M2M̂)T ⌦D is less than 1.

NetConf converges ,

⇢
⇣
(MM̂)T ⌦A+ (M2M̂)T ⌦D)

⌘
< 1(4.15)

Here, M̂ = (I�M2)�1.

Proof. The Jacobi method of solving a system of linear
equations [20] states that a linear equation system of
form x = (I�P)y converges if and only if ⇢(P) < 1.

Rewriting the update rule in Eq. (4.12) in terms
of vectorized D-priors and D-beliefs and applying the
above result proves the theorem.

In practice, convergence may be ensured by setting M
as cM, where c > 0 is an appropriately chosen constant
according to Theorem 4.3. Here, c can be interpreted as
the modulation decay factor for message propagation.
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Dataset Nodes Edges Description Classes

Polblogs [1] 1490 19090 Political blog hyperlink network Democrat/Republican
Coauthor [21] 28702 66832 Citation network 4 areas - DB, DM, AI, IR
Pokec [22] 1632803 30622564 Friendship network in Slovakia Male/female (slight heterophily)

Table 4: Datasets used

Method A B C

BP 6.20e-9 0.2561 0.5+

CAMLP 0.4860 0.5005 0.5210
NetConf 0.4833 0.4967 0.5118

Figure 6: Case Study: (a) graph with k = 2 classes
(b) BP vs CAMLP vs NetConf: final belief/leaning
for class green (bold = red; 0.5+ is slightly above 0.5)

5 Experiments

In this section, we (1) present a case study to demon-
strate how the top competitors, unlike NetConf, vio-
late our axioms and (2) experimentally verify the scal-
ability and e↵ectiveness of NetConf.

5.1 Case study using synthetic data. We present
a case study (Figure 6a) to illustrate how major com-
petitors disobey our axioms. Here, A, B and C are
the core nodes (unlabeled). Given the labels for the
remaining peripheral nodes (red/green) and homophily
network e↵ects, we investigate the belief/leaning scores
assigned by NetConf, BP and CAMLP.

In experiments, we use [0.1, 0.9] and [0.9, 0.1] as
prior for the red (top) and green (bottom) with nodes.
The core nodes are given uniform prior [0.5, 0.5]. Com-
patibility matrix from Eq. 5.16 with ✏ = 0.4 is used,
with CAMLP’s � set to the recommended default of
0.1. The belief/leaning returned by the three methods
are tabulated in Figure 6b.

(5.16) H =

✓
0.5 + ✏ 0.5� ✏
0.5� ✏ 0.5 + ✏

◆

All three methods label A correctly as red. CAMLP
and NetConf result in a belief value which is close
to 0.5 as is desirable. However, BP yields a red belief
(⇡ 1) despite the comparable number of red and green
neighbors, which is counter-intuitive.

The classification of node B illustrates the impor-
tance of certainty well. B has two neighbors – the red A
and the green C. CAMLP, which does not store/propa-
gate certainty, compute B’s belief from those of A and C,
resulting in a misclassification (violation of Axiom 3.2).
However, NetConf recognizes the high certainty of A

(a) Scalability (b) Accuracy@n

Figure 7: NetConf is (a) scalable (b) outperforms
the baseline, achieving better accuracy and precision

(⇡ 60⇥ neighbors) and by giving it higher weight, cor-
rectly classifies B.

Similar results were obtained for ✏ 2 (0, 0.5) and
� 2 (0, 1). In sum, NetConf obeys axioms and results
in intuitive classification unlike major competitors.

5.2 Experiments on real data. Our experiments
use three diverse publicly available real-world datasets
(Table 4). We implementedNetConf (iterative version
from Eq. (4.12)) in MATLAB, as it is well-optimized to
handle sparse matrix operations. The modulation decay
factor was chosen according to Theorem 4.3. Due to lack
of prior work which incorporates certainty in a scalable
manner, we resorted to the widely used BP as baseline.
All experiments were conducted on 2.7 GHz Intel Core
i5 with 16 GB main memory. Our experimental findings
can be summarized under the following three categories.

Q1. Scalability: How fast and scalable is Net-
Conf with #edges? We uniformly sampled 150K-
30M edges from Pokec network and timed NetConf
and BP for 5 iterations (computations only) to allow
comparability. In each case, we seeded 20% nodes and
used H from Eq. (5.16) with ✏ = �0.4 (heterophily).
Fig. 7a plots running time (in seconds; averaged over 10
trials) with the network size in log-log scale.

The plot shows our algorithm scales linearly with
the graph size. It was also found to be ⇠ 600⇥ faster
than a MATLAB implementation of BP by avoiding
loops and heavy-weight operations (similar to [10]),
processing upto ⇠ 30M edges in a few seconds. This
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suggests that NetConf is fast and is expected to scale
well to large graph applications.

Q2. E↵ectiveness: How accurate is NetConf?
We compare overall accuracy and accuracy@n curve of
NetConf against that of BP on three datasets. In
all cases, we seeded 30% nodes with their true labels
and prior certainty of 1 (due to lack of richer ground
truth). Unlabeled nodes were initialized to [ 1k , . . . ,

1
k ]

where k = #classes. The compatibility matrix H
from Eq.(5.16) with ✏ = 0.4 and �0.4 were used for
homophily (Polblogs/Coauthor) and heterophily
(Pokec) respectively.
(a) Overall Accuracy: The class with the high-
est belief/D-belief (BP/NetConf) was assigned as the
class for a node, breaking any ties arbitrarily. The accu-
racy results (Table 5) show that NetConf consistently
matches or outperforms BP and the di↵erences are sta-
tistically significant.
(b) Accuracy@n: We compute the accuracy on top n
nodes in a ranking based on the confidence of classifi-
cation and plotted it as a function of n. The di↵erence
in top two beliefs was used as the ranking mechanism
for BP; for NetConf, di↵erence in top two D-beliefs
was used as it incorporates certainty as well. NetConf
emerged as the clear winner on Polblogs dataset, as
is evident from Figure 7b. Similar trends were observed
in other datasets. These results suggest that NetConf
is ideal for precision-critical applications, e.g., fraud de-
tection [11, 13].

Q3. Certainty Scores: Do they make sense?
On the Coauthor network, we rank the authors on
their score for class DB (databases) and list the top-
5 by NetConf (Figure 1b) and by BP (Figure 1c).
Authors in the former list, with high D-belief for ‘DB’,
have several DB publications and coauthors, a high H-
index and several DB-related distinctions. In contrast,
BP ignores certainty and produces perfect scores for
many authors, as long as they have exclusively DB co-
authors and publications, no matter how many or how
few. Thus, they all tie in first place; we broke ties
arbitrarily and only Prof. Jiawei Han is in both lists.

In summary, our empirical studies show that Net-
Conf (i) obeys axioms and leads to intuitive classifi-
cation (ii) is faster than BP and has linear scalability;
(ii) never loses to BP and usually outperforms it; (iii)
produces certainty scores that reflect our expectations.

6 Related Work

Table 6 gives an overview of the di↵erences between
the methods. In summary, our proposed NetConf
is the first method that (i) handles arbitrary network

Accuracy Polblogs Coauthor Pokec

BP (Baseline) 91.38 76.26 73.78
NetConf 92.40 81.89 75.02

Table 5: Accuracy of BP vs NetConf (averaged
over 5 runs): Underlined numbers indicate significant
di↵erences p  0.05 according to a two-sided sign test.

L
P

[2
8]

S
O
C
N
L

[2
4]

B
P

[2
6]

A
d
so
rp
ti
on

[3
]

M
A
D
D
L
[2
3]

D
G
R

[8
]

T
A
C
O

[1
7]

L
in
B
P

[1
0]

C
A
M
L
P

[2
5]

N
e
t
C
o
n
f

Obeys axioms 3 3
Homo-/hetero-phily 3 3 3 3

Scalability 3 3 3 3 3 3 3 3 3
Closed-form 3 3 3 3 3

Table 6: NetConf has all desirable properties

e↵ects, (ii) satisfies all axioms, and (iii) gives a closed-
form solution for beliefs and certainties.

Transductive inference, a special case of semi-
supervised learning, has attracted a lot of interest
[4, 27]. Belief Propagation [26] is closely related, and
we have described it in Section 2. BP has replaced la-
bel propagation [28] and it has been successful on node
classification problems, due to its ability to handle both
homophily and heterophily. However, its convergence
can be guaranteed for some special graphs only [15].
Approximations to BP were able to prove convergence,
for the 2-class case [14], the multi-class case [10], and
heterogeneous graphs [7]. However, none of the methods
can model uncertainty.

E↵orts to incorporate uncertainty or confidence are
recent [3, 8, 17, 23, 24, 25]. Except CAMLP [25], all
are restricted to homophily e↵ects only. Adsorption [3]
and its extension MADDL [23], which propagate labels
by performing a controlled random walk on the graph
can only handle homophily. Dirichlet-based Graph
Regularization (DRG) [8] assumes every node has a
Dirichlet prior and propagates it along edges. However,
it is slow, as it needs to solve an optimization problem
numerically at every iteration. Transduction Algorithm
with Confidence (TACO) [17] computes both belief and
k ⇥ k uncertainty matrix for all nodes alternatively at
every iteration. But, it penalizes high degree nodes for
small di↵erences in the beliefs of neighbors even if the
neighbors indicate the same class. None of the above
methods handles arbitrary network e↵ects. SOCNL
[24] and CAMLP both introduce uncertainty, but they
both fail Axiom 3.1 (no network e↵ects).

In summary, NetConf is the only method that
satisfies all the specifications in Table 6.
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7 Conclusions

We presented NetConf, a method to perform belief
propagation along with uncertainties. The main idea
was to model beliefs as Dirichlet distributions and mes-
sages as multinomial counts. Unlike existing works,
NetConf follows proposed axioms, generalizes to arbi-
trary network e↵ects and is highly scalable. NetConf
has a closed-form solution and strong convergence guar-
antees. Our empirical analysis indicated the strong po-
tential of using uncertainty in node classification tasks.
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