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Abstract. Given a social-affiliation network – a friendship graph where
users have many, binary attributes e.g., check-ins, page likes or group
memberships – what rules do its structural properties such as edge or tri-
angle counts follow, in relation to its attributes? More challengingly, how
can we synthetically generate networks which provably satisfy those rules
or patterns? Our work attempts to answer these closely-related questions
in the context of the increasingly prevalent social-affiliation graphs. Our
contributions are two-fold: (a) Patterns: we discover three new rules
(power laws) in the properties of attribute-induced subgraphs, substruc-
tures which connect the friendship structure to affiliations; (b) Model:
we propose SOAR– short for SOcial-Affiliation graphs via Recursion– a
stochastic model based on recursion and self-similarity, to provably gen-
erate graphs obeying the observed patterns. Experiments show that: (i)
the discovered rules are useful in detecting deviations as anomalies and
(ii) SOAR is fast and scales linearly with network size, producing graphs
with millions of edges and attributes in only a few seconds. Code related
to this paper is available at: www.github.com/dhivyaeswaran/soar.

Keywords: Graph mining · Attributes · Patterns · Anomalies
Generator

1 Introduction

With the proliferation of the web and online social networks, social-affiliation
networks – social/friendship networks where users have many, binary attributes
or affiliations – have become increasingly common. Examples include social net-
working sites such as Facebook and Google+ which record user engagement,
e.g., pages liked (attributes are pages – yes if liked, no if not), media-sharing
social platforms such as Flickr and Youtube where users can form groups based
on their interests (attributes are groups – yes if member, no if not), location-
based social networks like Gowalla where users can check-in at a location they
physically visit (attributes are locations – yes if visited).
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We consider two closely-related research questions concerning these net-
works: [RQ1] What rules (patterns) do the various structural properties of
social-affiliation graphs – e.g., edge or triangle count – follow, in relation to its
attributes? [RQ2] How can we synthetically generate realistic networks which
provably satisfy these patterns? These questions fall under the umbrella of pat-
tern analysis and modeling, a well-explored research area and a standard prac-
tice in understanding real-world graphs [6,16,17,19]. Our interest in considering
these research questions stems in part from the scientific and practical impact
that the works on pattern analysis and modeling have had in the past. The dis-
coveries of the scale-free property (skewed degree distributions [10]) and the small
world property (small graph diameters [28]) and respectively their preferential-
attachment [4] and forest-fire [19] models, for instance, have had numerous appli-
cations in graph algorithm design, anomaly detection, graph sampling and more
[3,18].

While works on patterns and models for non-attributed graphs abound in the
literature, studies dealing with social-affiliation networks are somewhat limited
[14,29] (see Sect. 2). Our work complements these by discovering rules which
the structural properties of social-affiliation graphs follow in relation to their
attributes. Specifically, we study “attribute-induced subgraphs” (AIS, in short) –
each of which is a subgraph induced by the nodes affiliated to a given attribute
– substructures which connect the structure of friendship graph to the distribu-
tion of attribute values. See Sect. 3 for more details and Fig. 1 for an example.
Studying the patterns exhibited by the structural properties of AIS allows us
to understand homophily effects (‘birds of the same feather flock together’) and
consider questions of form ‘If the number of users affiliated to attribute a doubles,
what happens to the number of friendships between them?’ As we show later,
the patterns discovered based on AIS and the associated capability to answer
‘what-if’ questions are subsequently useful in (i) detecting anomalies and (ii)
developing and testing a realistic model for social-affiliation graphs.

Our contributions are two-fold: (a) Patterns: We study four large real-world
social-affiliation graphs and discover three new consistent patterns concerning
the structural properties of attribute-induced subgraphs. With the help of a
case study, we illustrate how the findings can be leveraged for anomaly detection.
(b) Model: We propose the SOAR model to produce synthetic social-affiliation
graphs provably matching all observed patterns. SOAR is based on self-similarity,
implicitly incorporates attribute correlations, scales linearly with graph size and
is up to 50× faster than the prior models for social-affiliation graphs.

Reproducibility. We use publicly-available datasets and open-source our code
at www.github.com/dhivyaeswaran/soar.

2 Related Work

We group related work into three categories: models for social networks with no
attributes [A] and those for social-affiliation graphs when attributes are given
[B] and not given [C].
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Table 1. Comparison with other models for social-affiliation graphs

Properties MAG [15] AGM [24] Zhel [29] SAN [14] SOAR

Generates edges and attributes simultaneously ✔ ✔ ✔

Scalable with increasing number of edges and attributes ✔ ✔ ✔

Provably obeys all observed patterns ✔

[A] Social graphs with no attributes. Several outstanding network mod-
els have been proposed to explain the observed structural characteristics of real-
world non-attributed networks. Notably, the Barabási-Albert model for heavy-
tail degree distributions [4], Forest Fire model for shrinking diameter [19], But-
terfly model for the evolution of giant connected component [20], Kronecker
model for community structure [18] and Random Typing Graph Model for self-
similar temporal evolution [2]. Excellent surveys are given in [6,13,22]. As such,
it is not clear how these models could be extended to produce attributes, given
the complex interplay between attributes and friendship structure [9,11,25].

[B] Social-affiliation graphs when attributes are given. The problem
of modeling network structure in the presence of known nodal attributes has
been studied. Notably, Multiplicative Attribute Graph (MAG) model [15] con-
nects nodes according to user-specified attribute-based link affinities. Attributed
Graph Model (AGM) [24] presents a generic approach using an accept-reject
sampling framework to augment a given non-attributed network model with
correlated attributes. Both MAG and AGM apply to settings with categorical
(not just binary) nodal attributes; however, they scale poorly with the number
of attributes: each edge is sampled proportional to roughly the dot product of
nodal attribute vectors, which is an expensive operation, considering that the
social-affiliation graph datasets we study have around 30K to 1.28M affiliations.

[C] Social-affiliation graphs when attributes are not given. The
simultaneous generation of attributes and friendships, in the context of social-
affiliation graphs (i.e., with many binary attributes), has received some atten-
tion. The pioneering work by [29] discovers several patterns in social-affiliation
graphs (e.g., power law relation between number of friends and average count
of affiliations). It proposes Zhel model by adapting the non-attributed micro-
scopic graph evolutionary model [17] for this setting. [14] studies the evolution of
directed social network of Google+ and its affiliations, focusing on the density,
diameter, degrees and clustering coefficients of users and affiliations. It proposes
SAN model augmenting [17] with attribute-augmented preferential attachment
and triangle-closing mechanisms to replicate the observations on Google+. The
patterns we discover in this paper are complementary to the above discoveries.
Further, both Zhel and SAN model the evolution of social-affiliation graphs,
by generating attributes and edges of one node at a time, while in contrast, we
investigate a one-shot approach to graph generation (i.e., without modeling its
evolution) which leads to input parsimony and ∼50× speed-up (see Sect. 5).

A qualitative comparison of social-affiliation graph models is given in Table 1.
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Table 2. Frequently used symbols and their meanings

Symbol Term Description

G Social-affiliation graph Undirected unweighted graph with many binary nodal attributes

n Number of nodes in G
k Number of attributes in G
A Adjacency matrix n × n binary matrix showing edge existence

F Membership matrix n × k binary matrix showing attribute possession

Ga Attribute-induced subgraph Subgraph induced by nodes affiliated to attribute a

na Node count Number of nodes in Ga

ma Edge count Number of edges in Ga

Δa Triangle count Number of triangles in Ga

σa Spectral norm Highest singular value of the adjacency matrix of Ga

3 Preliminaries

Fig. 1. (a) A social-affiliation
graph with isSquare, isStriped
attributes and (b) the subgraph
induced by isSquare attribute

Notation. Let G = (V, E ,A,M) be a social-
affiliation graph, where V is the set of nodes
(users), A is the set of binary attributes (affil-
iations1), E is the set of unweighted undi-
rected who-is-friends-with-whom edges among
nodes and M is the set of who-is-affiliated-to-
what attribute memberships between nodes and
attributes. That is, if node u is connected to node
u′, then, E includes edges (u, u′) and (u′, u); sim-
ilarly, (u, a) ∈ M iff node u is affiliated with
attribute a. G is equivalently expressed as a tuple
(A,F) of the n × n symmetric adjacency matrix
A and the n × k membership matrix F, where
n = |V| and k = |A| denote the number of nodes and attributes respectively.
The matrices are binary with 1 indicating the presence of an edge (in A) or an
attribute membership (in F). Table 2 gives the frequently used notation.

Attribute-Induced Subgraph (AIS). Given a social-affiliation graph G =
(V, E ,A,M), the attribute-induced subgraph Ga corresponding to a given
attribute a ∈ A is obtained by selecting the nodes affiliated to attribute a
and the edges which link two such nodes. Formally, Ga = (Va, Ea) where
Va = {u ∈ V | (u, a) ∈ M} and Ea = {(u, u′) ∈ E | u, u′ ∈ Va}. Let na = |Va| and
ma = |Ea| denote its number of nodes and edges respectively. Triangle count Δa

is the number of triangles in Ga while spectral radius σa is the largest eigenvalue
of its adjacency matrix. An example of an AIS is given in Fig. 1.

1 We use the following pairs of terms interchangeably throughout the paper: (graph,
network), (node, user), (attribute, affiliation).
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Datasets. We study four large publicly-available datasets, each of which con-
tains a social network formed by friendship (or family) relations and also side-
information regarding affiliations of users. Based on the nature of affiliations,
we describe the datasets in two categories: (i) Online-affiliation networks: In
Flickr [21] and YouTube [23], online photo-sharing and video-sharing web-
sites respectively, users are allowed to form groups based on their common inter-
ests. We consider each group as a binary attribute, i.e., a user u has a group g if
she participates in it. The friendship networks in these datasets are directed, but
still, they have a high link symmetry or edge reciprocity [21]. Hence, for simplic-
ity, we drop the direction of edges and retain a single copy of each resulting edge
to get an undirected graph without multi-edges. (ii) Offline-affiliation networks:
Brightkite and Gowalla datasets [8] contain undirected friendship network
along with user check-in information, i.e., who visited where and when. We use
each location as a binary attribute; a user u has a location attribute l if she
has visited l at least once. For a detailed description of these datasets, we refer
readers to the papers cited above. Some useful statistics are provided in Table 3.
The next section details our pattern discoveries on these datasets.

Table 3. Social-affiliation graph datasets studied

Dataset Reference |V| |E| |A| |M|
YouTube [23] 77K 0.4M 30K 0.3M

Flickr [21] 1.8M 16M 0.1M 8.5M

Brightkite [8] 58K 0.2M 0.8M 1M

Gowalla [8] 0.2M 1M 1.28M 4M

4 Pattern Discoveries

Given an attribute-induced subgraph Ga = (Va, Ea), there is an infinite set of
graph properties that one could investigate to look for patterns (number of
nodes/edges, degree distributions, one or more eigenvalues, core number, etc.).
Which ones should we focus on? Intuitively, we want to study properties that are
(i) fundamental, easy to understand and interpret, (ii) fast to compute, exactly
or approximately, in near-linear time in the number of edges and (iii) lead to
prevalent patterns that AISs obey consistently across different datasets. After
extensive experiments, we shortlist the following four properties of attribute-
induced subgraphs: (i) na = |Va|: number of nodes in Ga, i.e., number of users
affiliated with attribute a. (ii) ma = |Ea|: number of edges in Ga, i.e., number of
friendships among users affiliated with attribute a. (iii) Δa: number of triangles
in Ga, typically indicative of the extent to which nodes in Ga tend to cluster
together (e.g., via clustering coefficient). (iv) σa: spectral radius, or the principal
eigenvalue of adjacency matrix of Ga, roughly indicative of how large and how
dense the giant connected component in Ga is. We list our observations regarding
these properties in Sect. 4.1 and postpone explanations to Sect. 4.2.
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4.1 Observations

Following standard terminology, we say that variables x and y obey a power law
with exponent c, if y ∝ xc [1]. Our pattern discoveries are all power laws with
non-negative (and usually non-integer) exponents, as stated below.

Observation 1 ([P1] Edge count vs. node count). Edge count ma and node
count na of AISs obey a power law: ma ∝ nα

a , 0 ≤ α ≤ 2.

In the datasets we studied, α ∈ [1.17, 1.51]. That is, double the nodes in an AIS,
over double (roughly, triple) its edges.

Observation 2 ([P2] Triangle count vs. node count). Triangle count Δa

and node count na of AISs obey a power law: Δa ∝ nβ
a , 0 ≤ β ≤ 3.

In the datasets we studied, β ∈ [1.24, 1.96]. That is, as the number of nodes in
an AIS doubles, its triangle count becomes about 3–4 times larger.

Observation 3 ([P3] Spectral radius vs. triangle count). Spectral radius
σa and triangle count Δa of AISs obey a power law: σa ∝ Δγ

a, γ ≥ 0.

In the datasets we studied, γ ∈ [0.31, 0.33]. That is, doubling the spectral radius
of an AIS leads to an eight-fold increase in its number of triangles.

Figure 2, which plots the relevant quantities (ma vs. na, Δa vs. na and σa vs.
Δa), illustrates these observations. The cloud of gray points in these figures show
values corresponding to various AISs and darker areas signify regions of higher
density. The relevant exponents α, β, γ are computed following standard practice
(e.g., as in [16]). We bucketize x-axis logarithmically and compute per-bucket y
averages (black triangles). The slope of the black line, which is the least-squares
fit to the black triangles, gives the exponent. In addition, we report the Pearson
correlation coefficient ρ of the per-bucket averages as a proxy for the goodness-
of-fit of the power law relation. This value lies in [0, 1] and intuitively, the higher
the value is, the better is the fit. In our experiments, ρ was consistently above
0.95, suggesting a near-perfect fit.

4.2 Explanations, Use in Anomaly Detection, and Discussion

Here, we attempt to explain our observations in terms of known/expected prop-
erties of social-affiliation networks and hypothesize the nature of anomalies devi-
ation from each pattern above would give rise to.

[P1] Edge count vs. node count. As the number of nodes in an AIS dou-
bles, the number of edges remains the same (α = 0) for empty social-affiliation
graphs having no edges and quadruples (α = 2) for complete graphs. As real-
world social-affiliation networks tend to be sparse (|E| = O (|V|)), one might
expect the exponent α to be roughly 1. However, in experiments, α was much
higher, e.g., ∼1.5 for Flickr dataset. This suggests homophily, i.e., more friend-
ships among people sharing the same attributes, which causes the number of
edges to more than double (in fact, triple) when the number of nodes is doubled.
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Fig. 2. Patterns exhibited by attribute-induced subgraphs (each point is an AIS)

Attribute-induced graphs violating this pattern can be understood as unusu-
ally sparse or dense having too few/many friendships between users sharing an
attribute, e.g., when no two people who go to Starbucks are friends with each
other.

[P2] Triangle count vs. node count. As the number of nodes in an AIS
doubles, triangle count remains the same (β = 0) for empty or tree/star-like
graphs with no triangles and becomes eight times (β = 3) for fully connected
graphs. In experiments, β was been 1 and 2; that is, the triangle count becomes
2–4 times when the node count doubles. This suggests that the AISs are nei-
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ther stars nor cliques (as might ideally be expected based on homophily) but
somewhere in between – consisting of several small stars, cliques and also pos-
sibly isolated nodes. Violations of this pattern can be understood as unusually
non-clustered attribute-induced subgraphs (triangle-free, e.g., trees) or unusually
clustered graphs (cliques). For example, it is suspicious if everyone who visits
‘ShadySide’ are friends with each other.

Fig. 3. Eigenvalues of 5 AISs
with highest node counts from
YouTube dataset

[P3] Spectral radius vs. triangle count.
We know that the number of triangles in a graph
is the sum of cubes of its adjacency’s eigenval-
ues [12]. Based on this, we provide two suffi-
cient conditions for the observed slope of γ ≈
1/3. Condition 1 (Dominating first eigenvalue):
the first eigenvalue is much bigger than the
rest; hence, triangle count of AISs are approx-
imately the cube of their respective spectral
radii (roughly, the number of triangles in their
giant connected components, GCCs). Condition
2 (Power law eigenvalues): Lemma 1 provides
an alternate explanation assuming exponents of
eigenvalue power law distributions of all AISs are
identical. Diving deeper into the eigenvalue vs. rank plots of AISs (see Fig. 3)
reveals skewed eigenvalues distributions with similar slopes – suggesting that
both reasons above are at play. Violations are due to attribute-induced sub-
graphs having unusually small or sparse or dense GCCs.

Lemma 1 (Spectral radius-triangle count power law). If s is the common
exponent of power law eigenvalue distributions of the attribute-induced subgraphs
for a given social-affiliation graph, their triangle counts Δa and spectral radii σa

approximately obey Δa = σ3
a ζ(3s) where ζ(·) is the Riemann zeta function [27].

Proof. As the eigenvalues of adjacency matrices of all AISs follow a power law
with exponent s, the ith eigenvalue of any AIS is σai−s, where σa is its spectral
radius. Hence, triangle count Δa, which is the sum of cubes of eigenvalues of the
adjacency, is equal to

∑
i(σai−s)3 ≈ σ3

a

∑∞
i=0 i−3s = σ3

a ζ(3s), as desired. �	

Anomaly Detection. Our pattern discoveries represent normal behavior of
attributes in a social-affiliation graph, deviations from which can be flagged as
anomalies. For example, the spectral radius vs. triangle count plot for YouTube
yields a dense cloud of points mostly distributed along a straight line in log-
log scales (Fig. 4a); the red triangle marks an exception due to an anomalous
attribute. It turns out that, as expected, the deviation was due to its unusually
sparse GCC, which consisted of a giant star plus a few triangles (see Fig. 4b
for its Gephi visualization [5]). In contrast, a typical AIS with a comparable
triangle count (green triangle in Fig. 4a) has a denser GCC (Fig. 4c).

Discussion. It is natural to suppose that the data scraping methodology (sam-
pling size/strategy) would have a considerable impact on the pattern discoveries.
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Fig. 4. Anomaly detection using pattern [P3] reveals an attribute-induced subgraph
(AIS) with an unusually sparse giant connected component (GCC) (Color figure online)

However, the consistency of our observations across datasets sampled in vari-
ous ways – multiple sizes (Gowalla and Brightkite – almost whole public
data; Flickr, YouTube – large fraction of the giant weakly connected com-
ponent [8,21]) and strategies (no sampling, snowball sampling using forward
and/or reverse links depending on the public API) – suggest that the patterns
are indeed generalize across many reasonable data scraping mechanisms. Also,
note that our study is limited to the case of binary attributes; similar explo-
rations of categorical and real-valued attributes are possible but left to future
work.

5 SOAR Model

In this section, we show how to generate graphs which provably obey the discov-
ered patterns using a coupled version of the matrix Kronecker product [26]. The
resulting model, called SOAR– short for SOcial-Affiliation graphs via Recursion–
has two steps: (i) an initiator graph G1, consisting of carefully coupled initiator
matrices A1 for adjacency and F1 for membership, is chosen; (ii) the initiator
graph is recursively multiplied with itself via Coupled Kronecker Product (Defi-
nition 2) for a desired number of steps to obtain the final social-affiliation graph.
Sect. 5.1 presents SOAR model in detail. Our important contribution here is the
proof that Coupled Kronecker Product is a pattern-preserving operation, i.e., if
the initiator graph obeys patterns P1–P3, so does the final graph (see Sect. 5.2).

5.1 Proposed SOAR Model

Recall from Sect. 3 that G is a tuple (A,F) of the n × n symmetric adjacency
matrix A and the n × k membership matrix F, where n = |V| and k = |A|
denote the number of nodes and attributes respectively. Given an initiator social-
affiliation graph G1 = (A1,F1), where A1 is the n1 × n1 symmetric initiator
matrix for adjacency and F1 is the n1 × k1 initiator matrix for membership, we
propose to derive the final social-affiliation graph G = (A,F) via the recursive
equation:

Gt+1 = Gt ⊗̄ G1 (1)

where ⊗̄ is the Coupled Kronecker Product, as defined below:
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Definition 2 (Coupled Kronecker Product (CKP)). Given social-
affiliation graphs G1 = (A1,F1) and G2 = (A2,F2), their Coupled Kronecker
Product is given by

G1 ⊗̄ G2 = (A1 ⊗ A2,F1 ⊗ F2) (2)

where ⊗ is the matrix Kronecker product.

After M steps of Eq. (1), we obtain a n × n-dim AM and a n × k-dim FM

where n = nM
1 and k = kM

1 respectively. When the initiator matrices are binary,
so are the final matrices and thus can be directly used as the adjacency A
and membership F matrices, respectively. It turns out that the above process
captures the required power laws but has several discrete jumps (fluctuations).
Hence, we use the stochastic version below.

The main idea is to produce at every recursive step, matrices of edge/
membership occurrence probabilities instead of discrete (binary) edges/
memberships. Thus, we begin with initiator matrices having real number entries
in [0, 1] (they do not need to sum to 1) and add a small relative noise η to the
initiator matrices independently at every recursive step t. This process results
in the final dense probability matrices AM and FM , from which we recover A
and F by sampling each entry proportional to its final value. A scalable imple-
mentation of the above approach by sampling one edge or membership at a time
is given in Algorithm 1. The Hadamard product � in lines 6 and 8 performs an
element-wise matrix multiplication to add the desired noise to the initiators.

Running Time Analysis. Initialization (ln 1–11) contributes a fixed overhead
of O(M(n2

1 + n1k1)). The generation of edges (ln 12–20) and memberships (ln
21–29) take O (

n2
1M

)
per edge and O (n1k1M) per membership respectively. As

n1, k1 and M are small in practice (<10), Algorithm 1 is linear in the number of
edges and attribute memberships.

5.2 Theoretical Properties

The structural properties of graphs generated using Kronecker product are well-
studied and a number of desirable properties have been proved, e.g., multinomial
distribution of degrees and singular values, etc. [18]. These properties directly
carry over to the proposed model. More surprisingly, for careful coupling of ini-
tiators, SOAR graphs provably obey all the discovered power laws from Sect. 4.
This is due to the pattern-preserving property of the Coupled Kronecker Prod-
uct operation. That is, if graphs G1 and G2 obey the patterns P1–P3 with the
same exponent, then, so does their Coupled Kronecker Product G1 ⊗̄ G2. This
is stated in Lemmas 3–5 (proofs in appendix).

Lemma 3 (CKP preserves [P1]). If G1 and G2 obey the edge count vs. node
count power law with exponent α, i.e., ma ∝ nα

a , so does G1 ⊗̄ G2.

Lemma 4 (CKP preserves [P2]). If G1 and G2 obey the triangle count vs.
node count power law with exponent β, i.e., Δa ∝ nβ

a , so does G1 ⊗̄ G2.
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Algorithm 1. SOAR model
input : A1 ∈ [0, 1]n1×n1 , F1 ∈ [0, 1]n1×k1 , M ∈ N, η ∈ [0, 1]
output: (A,F) = SOAR(A1,F1, M, η)

1 num edges ← �(sum of entries in A1)
M�

2 num memberships ← �(sum of entries in F1)
M�

/* create M noisy copies of initiators (A1,F1), . . . , (AM ,FM ) */

3 A0,F0 ← A1,F1

4 for t = 1, 2, . . . , M do
5 Sample NA,t ∼ [−0.5, 0.5]n1×n1 // i.i.d, uniform

6 At ← A0 + ηA0 � NA,t // At ∈ [0, 1]n1×n1

7 Sample NF,t ∼ [−0.5, 0.5]n1×k1 // i.i.d, uniform

8 Ft ← F0 + ηF0 � NF,t // Ft ∈ [0, 1]n1×k1

9 end
/* generate edges */

10 A ← 0nM
1 ×nM

1 // zero matrix in sparse format

11 for i = 1, . . . , num edges do
12 for t = 1, . . . , M do rt, ct ← Sample a position in At prop. to its value ;

13 r ← ∑M
t=1 rt × nt−1

1 and c ← ∑M
t=1 ct × nt−1

1

14 Arc ← 1 and Acr ← 1 // add an undirected unweighted edge

15 end
/* generate attribute memberships */

16 F ← 0nM
1 ×kM

1 // zero matrix in sparse format

17 for i = 1, . . . , num memberships do
18 for t = 1, . . . , M do rt, ct ← Sample a position in Ft prop. to its value ;

19 r ← ∑M
t=1 rt × nt−1

1 and c ← ∑M
t=1 ct × kt−1

1

20 Frc ← 1

21 end

Lemma 5 (CKP preserves [P3]). If G1 and G2 obey the spectral radius vs.
triangle count power law with exponent γ, i.e., σa ∝ Δγ

a, so does G1 ⊗̄ G2.

The proofs, given in appendix, use the properties of matrix Kronecker product
[26] and two key observations: (1) edge count, node count, triangle count and
spectral radius of AIS for an attribute a are explicit algebraic functions of the
adjacency matrix A and the column in F which corresponds to a; (2) each
column in F1 ⊗ F2 is the Kronecker product of a column in F1 and a column in
F2. Given this, our main result is:

Theorem 6 (SOAR graphs provably obey patterns P1–P3). If G1 =
(A1,F1) obeys patterns P1–P3 with exponents α, β and γ respectively, then G =
SOAR(A1,F1,M, η = 0) also obeys P1–P3, with the same exponents α, β and
γ.

Proof. We prove this using induction on the number of steps t = 1, . . . ,M . It is
given that G1 follows P1–P3, hence the base case for t = 1 is true. Now suppose
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for 1 ≤ t < M , Gt follows P1–P3. Then, using Lemmas 3, 4 and 5, Gt ⊗̄ G1 = Gt+1

follows P1–P3. Thus, by induction, G = GM obeys P1–P3. �	
Although Theorem6 assumes no noise, it can be easily extended to the

stochastic version of the SOAR generator to give similar guarantees in expec-
tation. Our simulation studies, presented in Sect. 5.3, confirm our theoretical
results.

Discussion. We elaborate on various aspects of the proposed SOAR model. (a)
Input parsimony: SOAR, belonging to the paradigm of one-shot graph genera-
tion, has only four knobs to set: two (small) initiator matrices (A1,F1), number
of recursive steps M and noise level η. In contrast, evolutionary models typically
need knobs for node-arrival, lifetime, sleep-time and linking processes (e.g., [29]).
(b) Attribute correlations: SOAR implicitly incorporates attribute correlations,
as Kronecker product naturally leads to recursive community structure [18]. Con-
trast this with [24] which explicitly models attribute correlations. (c) Parameter
fitting: Given a social-affiliation network G = (A,F), its parameters for SOAR
model can be learned by employing KronFit [18] for A and F separately. (d)
Parameter selection: To create social-affiliation graphs with homophily, we rec-
ommend choosing initiators such that the entries of F1FT

1 are correlated with
those of A1. Intuitively, this ensures that nodes with similar attributes are linked
in the initiator and the self-similarity of Kronecker product passes this property
on to the final graph.

5.3 Simulation Studies

We compare SOAR to two representative baselines – AGM [24] and SAN [14] –
which were the most recent works in categories [B] and [C] from Sect. 2. Quanti-
tative experiments compare the time taken by the models to generate graphs of
comparable sizes, while qualitative experiments verify whether the models are
able to generate graphs obeying the three discovered patterns – [P1] Edge count
vs. node count power law relation, [P2] Triangle count vs. node count power law
relation, [P3] Spectral radius vs. triangle count power law relation – as well as
the following well-known properties: [P4] Skewed distributions2 of #friends per
node (node degree), #attributes per node (attribute degree of node) and #nodes
per attribute (AIS node count) [29], [P5] Skewed distribution of eigenvalues of
adjacency matrix [7].

We use the open-sourced code for SAN as is, but adapted AGM to get a
skewed distribution of #nodes per attribute (i.e., group size [29]) and subse-
quently generated edges using the default Fast Chung Lu model. For SOAR,
we use initiators from Fig. 6a–b (observe the correlation between F1FT

1 and A1)
replacing 1 → 0.6, 0 → 10−4 for stochasticity (and scaling the remaining entries
appropriately), recursive steps M = 8 and noise level η = 0.5. This yields a graph
with 0.4M nodes, 5.6M edges, 65K attributes and 2M attribute memberships.

2 Distributions having an asymmetric long or heavy tail, e.g., log-normal, log-logistic.
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Fig. 5. Speed and scalability.

Quantitative Evaluation. Figure 5 compares
generation time of SOAR vs. SAN for five dif-
ferent graph sizes (AGM, due to the explicit
enforcing of attribute correlations, scaled poorly
with #attributes). Running times are averaged
over 10 runs and experiments were performed on
Mac OSX Yosemite with 2.7 GHz Intel i5 core
and 16 GB main memory. We find that SOAR
scales linearly, i.e., slope ≈1 in log-log scale.
SAN also shows the desired linear scalability,
but was 50× slower for ∼1M edges plus mem-
berships.

Qualitative Evaluation. From Figs. 6 and 7, we observe that only the pro-
posed SOAR model is able to generate graphs obeying all these five patterns
(Fig. 6), whereas the baselines fail at least one of them (Fig. 7a). In the inter-
est of space, we show only one failed pattern per baseline: AGM leads to very
low triangle count for AIS, perhaps due to its undesirably high importance to
attribute correlation and homophily, which leads to few edges between nodes
sharing attributes when the number of attributes is large (Fig. 7b); SAN pro-
duces an almost flat eigenvalue distribution (excluding first three values), likely
due to the underlying preferential attachment model (Fig. 7c).

Fig. 6. SOAR generates realistic graphs: initiators in (a–b) lead to the discovered
patterns P1–P3 (c–e) and skewed degree and eigenvalue distributions P4–P5 (f–g).

In sum, our simulations demonstrate that SOAR is able to generate social-
affiliation graphs obeying all observed patterns in a fast and scalable manner.
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Fig. 7. (a) Graphs generated by baselines (AGM, SAN) disobey at least one pattern,
e.g., (b) [P3] of AGM and (c) [P5] of SAN. Here, ✔ denotes empirical adherence
based on a few parameters, while ✔ indicates theoretical adherence as well. (Color
figure online)

6 Conclusion

We investigated the problem of pattern analysis and modeling of social-affiliation
graphs – a friendship graph where users have many, binary attributes e.g., check-
ins, page likes or group memberships – with the help of four large publicly-
available real-world datasets. Our contributions are: (i) Patterns: We discovered
three new consistent patterns concerning the structural properties of attribute-
induced subgraphs and illustrated how the findings can be leveraged for anomaly
detection. (ii) Model: We proposed SOAR model to produce synthetic social-
affiliation graphs provably matching all observed patterns. It is based on the
principle of self-similarity, implicitly incorporates attribute correlations, scales
linearly with graph size and is up to 50× faster than the currently available
generators for social-affiliation graphs. Our code is open-sourced at www.github.
com/dhivyaeswaran/soar. Similar exploration of node-attributed graphs with
categorical/real-valued attributes is a valuable direction for future work.
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Appendix (Proofs from Sect. 5)

First, recall the following properties of the Kronecker product [26] for any four
suitably sized matrices A,B,C and D: (A⊗B)T = AT ⊗BT ; (A⊗B)(C ⊗D) =
AB ⊗ CD; Tr[A ⊗ B] = Tr[A]Tr[B]; σ(A ⊗ B) = σ(A)σ(B) where σ(·) is the
spectral radius.
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Next, observe that edge count, node count, triangle count and spectral radius
of AIS for an attribute a can be explicitly expressed as a function of adjacency
matrix A and the ath column in F (call it fa) as follows: (i) Node count of AIS,
na = fT

a fa; (ii) Edge count of AIS, ma = 1
2fT

a Afa; (iii) Triangle count of AIS,
Δa = 1

6Tr[(D(fa)AD(fa))3], assuming no self loops – here, D(fa) denotes the
diagonalization of vector fa; (iv) Spectral radius of AIS, σa = σ(D(fa)AD(fa)).

Let the compact notation,
⊗n

j=1 Aj denote A1 ⊗ A2 . . . ⊗ An. Accordingly,
every column of

⊗n
j=1 Aj can be expressed as the Kronecker product of a column

from each Aj , j ∈ {1, . . . , n}. We are now ready to state our proofs.

Proof (Lemma 3). Any column fa in F1 ⊗F2 is a Kronecker product of columns
fi,1 in F1 and fj,2 in F2 for some i, j. The node count of AIS of a is fT

a fa =
(fi,1 ⊗ fj,2)T (fi,1 ⊗ fj,2) which simplifies to (fT

i,1fi,1)(fT
j,2fj,2) i.e., na = ni,1nj,2.

Similarly, the edge count of AIS of a is ma = 1
2 (fi,1⊗fj,2)T (A1⊗A2)(fi,1⊗fj,2)

which can be written as 2(12fT
i,1A1fi,1)(12fT

j,2A2fj,2) ∝ mi,1mj,2. Now, as
G1,G2 follow [P1] with exponent α (given), mi,1 ∝ nα

i,1 and mj,2 ∝ nα
j,2.

Hence, ma ∝ nα
a .

Proof (Lemma 4). Again, let fa = fi,1 ⊗ fj,2 for attributes i, j, a in G1,G2 and
G1 ⊗ G2 respectively. The node count of AIS of a, again, is na ∝ ni,1nj,2. The
triangle count of AIS of a is Δa = 1

6Tr[(D(fa)(A1 ⊗ A2)D(fa))3] which can be
simplified as 1

6

(
Tr[(D(fi,1)A1D(fi,1))3]

) (
Tr[(D(fj,2)A2D(fj,2))3]

) ∝ Δi,1Δj,2

using the first, second and third Kronecker properties stated above. Now, as i
and j follow [P2] with exponent β (given), Δi,1 ∝ nβ

i,1, and Δj,2 ∝ nβ
j,2. This

results in Δa ∝ nβ
a .

Proof (Lemma 5). Once again, let fa = fi,1 ⊗ fj,2 for attributes i, j, a in G1,G2

and G1 ⊗ G2 respectively. We know from the previous proof that triangle count
of AIS of a follows Δa ∝ Δi,1Δj,2. Now, spectral radius of AIS of a is σa =
σ(D(fa)(A1 ⊗ A2)D(fa)) which is σ(D(fi,1)A1D(fi,1))σ(D(fj,2)A2D(fj,2)) =
σi,1σj,2 due to the second and fourth Kronecker properties stated above. As
graphs G1,G2 follow [P3] with exponent γ (given), i.e., σi,1 ∝ Δγ

i,1 and σj,2 ∝
Δγ

j,2. Therefore, σa ∝ Δγ
a.
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