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Abstract. If Alice is majoring in Computer Science, can we guess the
major of her friend Bob? Even harder, can we determine Bob’s age or
sexual orientation? Attributed graphs are ubiquitous, occurring in a wide
variety of domains; yet there is limited literature on the study of the inter-
play between the attributes associated to nodes and edges connecting
them. Our work bridges this gap by addressing the following questions:
Given the network structure, (i) which attributes and (ii) which pairs
of attributes show correlation? Prior work has focused on the first part,
under the name of assortativity (closely related to homophily). In this
paper, we propose ProNe, the first measure to handle pairs of attributes
(e.g., major and age). The proposed ProNe is (a) thorough, handling
both homophily and heterophily (b) general, quantifying correlation of a
single attribute or a pair of attributes (c) consistent, yielding a zero score
in the absence of any structural correlation. Furthermore, ProNe can be
computed fast in time linear in the network size and is highly useful, with
applications in data imputation, marketing, personalization and privacy
protection.

Keywords: Attributed networks · Homophily · Heterophily ·
Assortativity

1 Introduction

Suppose we know that Alice is majoring in Computer Science. To what extent
can we comment on the major of her friend Bob? How accurately can we predict
his age or sexual orientation? At a broader level, given the structure of a network
and some attributes (e.g., major, age) on the nodes, how can we find out (a)
which attributes (b) which pairs of attributes show correlation?

Attributed networks are ubiquitous, occurring in a number of domains. For
instance in social networks, where nodes represent people, and edges indi-
cate friendships, the attributes may include interests/demographics of indi-
viduals. Similarly in citation networks, where papers (nodes) cite each other
(edges), each paper also incorporates information regarding the venue or key-
words (attributes). However, despite the prevalence of attributed graphs, the vast
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majority of network science has dealt solely with the graph structure/topology
[4,5] ignoring the attributes.

Studies focusing on the interplay between the network structure and
attributes are fairly recent [9,14,15]. For example, in a typical social network, the
similarity of individuals motivates them to form relations (social selection) and
in turn the individuals may themselves be affected by their relations (a.k.a. social
influence) [14]. This assortative mixing and peer influence results in a homophily
pattern observed in many real world networks [17], where neighboring nodes
exhibit similar characteristics/attributes. Several works use this observation to
cluster data [6], build realistic generative models [2,12] and accurate prediction
models [1,11]. There are still fewer studies that try to understand assortativity
in networks: by quantifying the correlation of nodal attributes and the structure
in a static network [17,18], or by investigating the interplay of social selection
and influence over time [9].

Table 1. All variants of ProNe are thorough, general and consistent in contrast
to the baseline assortativity measures.

Assortativity, as a measure for structural correlation of a single attribute,
presents a major drawback that it can capture homophily mixing pattern
(i.e., when nodes of same attribute value link together) only. This is demon-
strated in Table 1. Assortativity (r-index) gives a full score of 1 to perfect
homophily (i.1); but is unable to distinguish between perfect heterophily (i.2)
and randomness (i.3). Further, it cannot characterize or distinguish the mix-
ing patterns involving a pair of attributes (e.g., ii.1 where there is correlation
between color and shape based on structure, and ii.2. where shape and color are
independent).

The goal of this work is the formal characterization of the proclivity of
attributed networks, i.e., the inclination or predisposition of nodes with a cer-
tain value for an attribute to connect to nodes with a certain other value for the
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same (self-proclivity) or a different attribute (cross-proclivity). The problem we
address in this work can be informally stated as:

Informal Problem 1. Given: an attributed network G, two different attributes
a1, a2

To measure:

– Self-proclivity which captures how predictable neighbors’ attribute values for a1

are, given a node’s value for a1.
– Cross-proclivity which captures how predictable neighbors’ attribute values for

a2 are, given a node’s value for a1 or vice versa.

We propose ProNe (PROclivity index for attributed NEtworks) for quanti-
fying both self- and cross-proclivity in attributed networks, by drawing upon the
clustering validation literature. In place of the confusion matrix (a.k.a. contin-
gency table) which is used to measure the agreements between two groupings of
datapoints, we propose to consider the mixing matrix (which will be introduced
in Sect. 3) of attributes. ProNe has the following desirable properties:

✓ Thoroughness: ability to capture homophily and heterophily
✓ Generality: applicability in characterizing both self- and cross-proclivity
✓ Consistency: quantification of the absence of correlation as zero
✓ Scalability: linear running time with respect to the number of edges

ProNe will help with numerous settings, including:

– data imputation: what attributes should we use to guess a missing attribute
of Alice, given the attributes of her friends

– marketing: for ad placement and enhancing e-shopping experience
– personalization: for early depression-detection from online networks [7,8]
– anonymization/privacy: which attributes, or pairs of attributes can reveal sen-

sitive information about Alice and thus should be masked

The outline of the paper is as follows. In Sect. 2, we review related work and
present the assortativity indices proposed in literature. Section 3 formally intro-
duces our proposed metric ProNe and Sect. 4 establishes its theoretical proper-
ties. After presenting the results upon applying ProNe to Facebook attribute
networks in Sect. 5, we finally conclude in Sect. 6.

2 Related Work and Background

In this section, we briefly review the prior work for attributed graphs and present
more background on the two assortativity measures proposed in the literature
which we will use as our baseline for comparison.
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2.1 Related Work

We will group related work under the following four categories: (i) measures for
attribute correlation [16–18] (ii) dynamic patterns in attributed graphs [9,12]
(iii) models for attributed networks [13,19] (iv) link prediction and inference
[10,11,14,21,24].

The correlation of attributes with the structure of the network was first stud-
ied in [17], in which the assortative mixing of a single attribute was quantified
through r-index. To the same end, Q-modularity is proposed [16] based on the
surprise in encountering edges connecting attributes of the same value. For vec-
tor attributes, assortativity is extended by considering average similarities of
connected nodes (e.g., using euclidean or cosine similarity) [18]. There is little
work beyond this on quantifying structural correlation of attributes.

On the other hand, several studies try to better understand the dynamics
of homophily [9,12]. For example, a clear feedback effect between social influ-
ence and selection in the network of Wikipedia editors has been discovered
in [9], where they observe a sharp increase in the average cosine similarity of
users right before they interact for the first time followed by a steady increase
in their similarity. In a related study, patterns of attributes in Google+ net-
work have been investigated [12] by modeling it as a social-attribute network
(SAN), which simply augments the graph by adding nodes which correspond to
attribute values and connects them to the individuals who have those attributes.
Multiplicative attributes graph model [13] is proposed for attributed networks
using a link-affinity matrix, where they assume that the attributes are binary
and are independent. To incorporate the attribute correlations into this model,
[19] an accept-reject sampling framework was used to filter the edges generated
from the underlying model and selectively accept those that match the desired
correlations.

Since nodal similarities and social interactions are two tangled factors which
affect the evolution of networks [9], models which incorporate the correlation
between attributes and relations better predict links and infer attributes, as con-
firmed by many recent studies [10,11,14,24]. A large body of predictive models
extract topological features from the network and combine them with the nodal
features to achieve better classification [23] while others directly utilize the gen-
erative graph models to jointly predict links and infer attributes [10,11].

We are interested in the more fundamental question of quantifying structural
correlations of a single attribute (more general than assortative mixing) or a
pair of attributes and thus our work falls into group (i). We will review our only
competitors – r-index [17] and Q-modularity [16] in the following section.

2.2 Background

r-index: Given an attributed network, r-index for assortativity constructs the
k×k normalized mixing matrix E whose (i, j)th entry, eij , determines the fraction
of edges connecting nodes with attribute value i to nodes with value j. This
matrix can be then summarized by an assortativity coefficient [17] defined as:
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r =
∑

i eii − ∑
i ei.e.i

1 − ∑
i ei.e.i

=
Tr[e] − ||e2||

1 − ||e2|| (1)

where ei. =
∑

j eij , e.i =
∑

j eji, and
∑

ij eij = 1. Here, r = 1 shows perfect
assortative mixing and r = 0 when there is no assortative mixing.

Q-Modularity: An alternate characterization of assortativity is to measure
how unexpected the edges between the nodes with the same attribute value are
compared to random. Here, random refers to the distribution of edges at random
after fixing the degree distribution of the nodes. Mathematically,

Q =
∑

i

eii − e2i. = Tr[e] − ||e2|| (2)

Observation: We can see that Q-modularity (Eq. 2) is equivalent to the numer-
ator of r-index (Eq. 1). In fact, the normalized Q proposed for measuring the
assortativity in [16] is equivalent to Eq. 1 (since the maximum value of Tr[e] is 1).

3 Proposed Method: PRONE

Consider the k × r mixing matrix E for two categorical/nominal attributes a1

and a2, with respectively k and r distinct values (cardinality). More precisely,
elements of E denote the number of edges connecting nodes with the correspond-
ing attributes, i.e., eij represents the number of edges that connect a node that
possesses ith value of a1 (va1

i ) to a node that has the jth value of attribute a2

(va2
j ). The resulting mixing matrix (and its marginals) is summarized in the fol-

lowing table and form the basis of our ProNe index for measuring the structural
correlation between a1 and a2 (Table 2).

Table 2. Mixing matrix of two categorical attributes, a1 and a2

va2
1 va2

2 . . . va2
r marginal sums

va1
1 e11 e12 . . . e1r e1.
va1
2 e21 e22 . . . e2r e2.
...

...
...

. . .
...

...
va1
k ek1 ek2 . . . ekr ek.

marginal sums e.1 e.2 . . . e.r e..

Here, we have ei. =
∑

j eij , e.i =
∑

j eji, and e.. =
∑

i

∑
j eij . This mixing

matrix is analogous to the confusion matrix or contingency table of two cluster-
ings if we assume distinct values of each attribute are class labels for a grouping
based on that attribute. Hence, we can quantify the divergence in this matrix
as [20]:
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Df =

∑
i [f(ei.) − ∑

j f(eij)] +
∑

j [f(e.j) − ∑
i f(eij)]

∑
i f(ei.) +

∑
j f(e.j) − 2

∑
i

∑
j f( e.jei.

e..
)

(3)

The numerator aggregates the per-row and per-column divergences of this
matrix, while the denominator normalizes this quantity using the maximum
divergence value when the marginals are fixed. The correlation or agreement of
the two attributes a1 and a2 is then obtained from 1 − Df . We consider three
specific derivations of this measure using f(x) = x log x, f(x) = x2, f(x) = x3;
the first two correspond to the two most commonly used clustering agreement
indexes: respectively Normalized Mutual Information (NMI), and Adjusted Rand
Index (ARI). Specifically, if we normalize E so that e.. = 1, the ProNel

(f(x) = x log x) and ProNe2 (f(x) = x2) derivations are simplified as:

ProNel =

∑
j e.j log(e.j) +

∑
i ei. log(ei.) − ∑

ij eij log(eij)
1
2 [

∑
j e.j log(e.j) +

∑
i ei. log(ei.)]

(4)

ProNe2 =

∑
ij e2ij − (

∑
i e2i.)(

∑
j e2.j)

1
2 [

∑
i e2i. +

∑
j e2.j ] − (

∑
i e2i.)(

∑
j e2.j)

(5)

4 Theoretical Properties

4.1 Thoroughness

ProNe considers all combinations of attribute values when measuring proclivity.
Therefore, it can capture all proclivity patterns inherent in the data including
homophily and heterophily; whereas the original assortativity index only con-
siders the matched attribute values abd hence can only capture homophily. In
particular, ProNe can capture any mixing patterns between the nodes which are
regularly link together, i.e., of two given but not necessarily the same attributes.

For instance, in the test case of (i.2) in Table 1, ProNe detects perfect pro-
clivity as red nodes always connect to yellow nodes, and light blue nodes always
link to dark blue nodes. This is not captured by the assortativity index (Q or its
normalized version r) which only measures the links between nodes of the same
color (homophily) and neglects the off-diagonal elements in the mixing matrix
E. These indices in fact have the exact same value for (i.2) and (i.3), even though
(i.3) has random color assignments and hence zero proclivity. ProNe, however,
returns the maximum value 1 for the perfect proclivity in (i.2) and is close to
zero for the random case.

Lemma 1. (r-index is not thorough). R-index does not capture perfect het-
erophily, especially when the number of attribute values is high.

Proof. We prove this by giving a counter example. Consider a graph with a
single attribute which takes values {1, 2, . . . , 2k} and shows perfect heterophily
in the following manner: Nodes with value i (for i = 1, . . . , k) are connected only
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to nodes with value k + i. If pi is the fraction of total edges connecting nodes
of attribute value i with nodes of attribute value k + i, the k × k normalized
mixing matrix E is given by ei,k+i = ek+i,i = pi/2 and eij = 0 otherwise.
Note that the leading diagonal elements are zero and the row/column sums are
ei. = e.i = ek+i. = e.k+i = pi/2 for i = 1, . . . , k. Using these, the r-index (Eq. 1)
may be calculated as

r =
0 − 0.5

∑k
i=1 p2i

1 − 0.5
∑k

i=1 p2i

Taking pi = 1/k, r = −1
2k−1 . The maximum negative assortativity of −1 is

attained only when k = 2. As k is increased, the value approaches zero (ran-
domness). Thus r-index fails to capture perfect heterophily, particularly for
large k. �

Lemma 2 (Heterophily and self-proclivity). Perfect heterophily leads to a
perfect self-proclivity score of 1, for any choice of f .

Proof. Let an attribute assume values 1, . . . , k and let π be a permutation of the
values such that πi �= i and πi = j ⇐⇒ πj = i. Let the probability of edge
between i and j be pi = pj if j = πi and 0 otherwise. Also, let

∑
i pi = 1.

The row/column marginals are ei. = e.i = pi while
∑

i

∑
j f(eij) =∑

i f(eiπi
) =

∑
i f(pi). From Eq. 3,

ProNe = 1 −
∑

i f(pi) +
∑

j f(pi) − 2
∑

i f(pi)
∑

i f(pi) +
∑

j f(pi) − 2
∑

i

∑
j f(pipj)

= 1

�
4.2 Generality

Equation 3 and its ProNe derivations including Eqs. 4 and 5 do not impose any
assumptions on the mixing matrix Er×k and hence can be applied to general
cases. On the other hand, the definition of previous measures for assortativity
in Eqs. 1 and 2 require E to be a square matrix (r = k) and hence cannot
be extended to measure cross-proclivity of two attributes which have different
cardinalities.

For instance, in the test case of (ii.1) in Table 1, we see a mixing pattern
between color and shape: i.e., red and yellow circles mix together while light and
dark blue squares link to each other. The assortativity measure Q and its nor-
malized version, r, cannot be applied in this case, as the diagonal is not defined
for the 4×2 mixing matrix. ProNe, on the other hand, is able quantify this non-
square mixing matrix, since it is defined based on average divergence/dispersion
in the rows and columns of E. We can see that all variations of ProNe cor-
rectly detect a high correlation between shape and color for this case, whereas
they return the baseline of 0.0 for the random case of (ii.2) where there is no
such correlation.

Lemma 3 (r-index and PRONE). Squashing the off-diagonal elements in for-
mula of ProNex yields r-index.
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Proof. Let E be the normalized mixing matrix with e.. =
∑

i ei. =
∑

j e.j = 1.
Using f(x) = x, we have

ProNex = 1 −
∑

i ei. +
∑

j e.j − 2
∑

i

∑
j eij

∑
i ei. +

∑
j e.j − 2

∑
i

∑
j ei.e.j

= 1 − 1 − ∑
i

∑
j eij

1 − ∑
i

∑
j ei.e.j

Squashing the off-diagonal products to 0 using the indicator function I(i = j),
we get

1 − 1 − ∑
i

∑
j I(i = j)eij

1 − ∑
i

∑
j I(i = j)ei.e.j

= 1 − 1 − Tr[e]
1 − ∑

i ei.e.i

which is the expression for r-index. �

4.3 Consistency

ProNe is expected to return zero when there is no structural correlation in the
network. This is a known desired property for the clustering validation indexes.
ARI, in particular, is called Adjusted Rand Index for the very same reason that
it returns a constant baseline of zero for agreements by chance. This complies
with the ∼0 correlations we observed for random color assignments in the two
test cases of (i.3) and (ii.2) of Table 1.

Lemma 4 (Consistency of PRONE). For any choice of f , ProNe is consis-
tent (adjusted for chance), i.e., if values for a nodal attribute are drawn from a
categorical distribution ignoring the network structure, its self-proclivity is zero
in expectation.

Proof. Let the multinomial distribution from which the values for attributes a1

and a2 are drawn be parameterized by p1, . . . , pk and q1, . . . , qr where k and
r are the cardinalities of categorical attributes a1 and a2 respectively. Here,∑

i pi =
∑

j qj = 1. In the absence of structural correlation of attributes, the
expected fraction of edges that connect nodes of attribute values a1 = i and
a2 = j is piqj , which is the expected entry eij in the normalized mixing matrix
E. The expected marginal of row i (or column j) in E is

∑
j piqj = pi (or qj).

Thus, in expectation,

ProNef = 1 −
∑

i f(pi) +
∑

j f(qj) − 2
∑

i

∑
j f(piqj)

∑
i f(pi) +

∑
j f(pj) − 2

∑
i

∑
j f(piqj)

= 0

which proves the consistency of ProNe. �

4.4 Scalability

ProNe has the same computational complexity as the previous measures Q and
r, which is the cost of building the mixing matrix E. E can be computed by a
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single pass over all edges in the graph and hence ProNe is linear in order of
number of edges.

In more detail, if we assume m is the total number of edges in the network and
k represents the maximum cardinality of attributes, ProNe can be computed in
O(m+k2) time. This matches the computational order for the previous measures,
O(m + k), as k � m (the number of edges in a graph is typically much larger
than the cardinality of a nodal attribute).

Here, we also empirically measure the computation time of ProNe for net-
works of varying sizes to show the scalability of the ProNe. In particular, we a
generate network of size m, and assign nodes a single attribute with cardinality
k, i.e., we assign to each node u, a value in {1, . . . , k} chosen uniformly at ran-
dom. Figure 1 plots the computational time in seconds as the number of edges
grows. The observed linear trend confirms our claim.

number of edges

Fig. 1. Scalability of ProNe on networks generated using Barabási and Albert [3]
model with 1K nodes and ∼10K edges. The attribute cardinality was varied in
{5, 10, 20, 100} and the results were averaged over 10 runs.

Choice of f in Practice

Although the above properties are valid for arbitrary choice of f , we recommend
choosing f to be a superadditive function1 satisfying f(x) ≥ 0∀x ∈ [0, 1] and
f(1) = 1 for the proclivity scores to be bounded in [0, 1] [20].

5 Empirical Studies Using Real World Data

Here, we study the ProNe in Facebook friendship network of 100 US collages
available in a.k.a. Facebook 100 dataset [22]. In networks of this dataset, each
user has six categorical attributes: (1) gender (male/female), (2) status (fac-
ulty/student/etc.), (3) major, (4) second major/minor (high missing values),
(4) dormitory of residence, (5) class year and (6) high school. Figure 2 shows

1 f is superadditive ⇐⇒ f(x + y) ≥ f(x) + f(y).
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one sample network of this dataset which has 6386 nodes and 217662 friendships
edges. The same network is plotted with six different color codings of the nodes,
i.e., one plot per attribute in which nodes are colored based on their value for
that particular attribute.

major
62(76) values
9.94% missing

dorm
23(25) values
48.2% missing

gender
2(2) values

5.87% missing

status
5(6) values

0.03% missing

year
9(20) values
12% missing

highschool
198(2881) values
13.7% missing

Fig. 2. An example Facebook friendship network, where nodes are colored based on
their corresponding attribute value (missing values are white, and non-frequent values
are gray). For attribute status and year, we visually observe some correlation between
the color of the nodes and their locations, whereas the locations are derived from a
layout algorithm that looks only at the connectivity between the nodes. (Color figure
online)

In Fig. 2, locations of nodes are derived from a network visualization algo-
rithm which only looks at the topology or structure of the graph and tries to
place nodes together as cohesive groups. Depending on the layout algorithm used,
we can visually observe some of the correlations between attributes (colors) and
the structure. In particular, with this example layout, the self proclivityof year
might be obvious. ProNe provides a fast and quantitative way to detect both
the obvious and the hidden structural correlations in such a dataset.

We can see the values of ProNe for Facebook dataset in Fig. 2 reported in
Table 3. The diagonal of this matrix show the self-proclivity values for the corre-
sponding attributes, and the off-diagonal values provide the cross-proclivity mea-
surements between the corresponding pairs of attributes.

Table 3 reports the results using ProNe2; we observe a similar trend using
the ProNel and ProNe3 variations. These are reported in Table 4. The choice
of ProNe, i.e., the generative function used in Eq. 3, depends on the application
at hand.

We observe similar patterns over different samples in the Facebook 100
dataset. Here, for example, we report the proclivity for another sample,
i.e., Rice31 network from this collection which has 4087 nodes and 184828 edges.

Discussion: From the ProNe scores, we infer that the dormitory is significantly
correlated with friendship as it has a high self-proclivity. This is also the case
for status (faculty or student) and year. What this means is the following: Given
Smith’s dormitory (or status or year) attribute value, we can predict the dorm
(or status or year, respectively) value of his friends. On the other hand, highschool
and minor show zero self-proclivity and the same cannot be said of them. Also,
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Table 3. Proclivity of attributes for the Facebook dataset in Fig. 2 using ProNe2.
The diagonal and off-diagonal entries represent the self-proclivity and the cross-
proclivity values respectively. Nodes with missing values were removed before the
computation.

ProNe2 Major Gender Year Status Dorm Highschool Minor

Major 0.01 0.00 0.00 0.00 0.00 0.00 0.00

Gender 0.00 0.00 −0.00 −0.00 −0.00 0.00 −0.00

Year 0.00 −0.00 0.22 0.03 0.04 0.00 0.00

Status 0.00 −0.00 0.03 0.27 0.02 0.00 0.00

Dorm 0.00 −0.00 0.04 0.02 0.11 0.00 0.00

Highschool 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Minor 0.00 −0.00 0.00 0.00 0.00 0.00 0.00

Table 4. Proclivity of attributes for the Facebook dataset in Fig. 2 using ProNel and
ProNe3. These tables provide alternative measurements to Table 3.

ProNel ProNe3

MajorGenderYearStatusDormHighschoolMinorMajorGenderYearStatusDormHighschoolMinor

Major 0.01 0.00 0.01 0.00 0.01 0.05 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Gender 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Year 0.01 0.00 0.250.07 0.07 0.07 0.01 0.00 0.00 0.150.01 0.02 0.00 0.00

Status 0.00 0.00 0.070.09 0.02 0.02 0.00 0.00 0.00 0.01 0.29 0.00 0.00 0.00

Dorm 0.01 0.00 0.070.02 0.16 0.10 0.02 0.00 0.00 0.02 0.00 0.05 0.00 0.00

Highschool0.05 0.00 0.070.02 0.10 0.31 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Minor 0.01 0.00 0.01 0.00 0.02 0.07 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 5. Proclivity of attributes for Rice31 dataset using different derivations of
ProNe.

PRONEl
major gender year status dorm highschool minor

major 0.02 0.00 0.01 0.00 0.01 0.03 0.01
gender 0.00 0.00 0.00 0.00 0.00 0.00 0.00
year 0.01 0.00 0.17 0.08 0.00 0.05 0.01
status 0.00 0.00 0.08 0.11 0.00 0.02 0.00
dorm 0.01 0.00 0.00 0.00 0.25 0.09 0.01

highschool 0.03 0.00 0.05 0.02 0.09 0.21 0.05
minor 0.01 0.00 0.01 0.00 0.01 0.05 0.01

PRONE3
major gender year status dorm highschool minor
0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.07 0.02 0.00 0.00 0.00
0.00 0.00 0.02 0.30 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.15 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00

PRONE2
major gender year status dorm highschool minor

major 0.01 0.00 0.00 0.00 0.00 0.00 0.00
gender 0.00 0.00 0.00 0.00 0.00 0.00 0.00
year 0.00 0.00 0.13 0.05 0.00 0.00 0.00
status 0.00 0.00 0.05 0.26 0.00 0.00 0.00
dorm 0.00 0.00 0.00 0.00 0.24 0.00 0.00

highschool 0.00 0.00 0.00 0.00 0.00 0.01 0.00
minor 0.00 0.00 0.00 0.00 0.00 0.00 0.01

we uncover a surprising pattern that attribute values for year and dorm show
correlation given the friendship network, based on their cross-proclivity of 0.04.
Thus, given Smith’s dorm, it may be possible to predict Smith’s friends’ year
values, an inference which is otherwise not possible, from just visualization.
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In sum, ProNe is (i) novel and is the first to characterize pairwise attribute
correlations given the structure; (ii) is fast to compute and scales linearly with
network size; (iii) is effective and discovers interesting correlation patterns when
applied to real world graphs. These together make ProNe extremely useful in
practice – with applications in anonymizing networks, marketing, data imputa-
tion and many more (Table 5).

6 Conclusion

In this paper, we proposed ProNe to measure the self- and cross-proclivity pat-
terns and quantify the correlation of a single attribute or a pair of attributes
with the network structure. Our proposed ProNe has the following desirable
characteristics:

✓ Thoroughness: ProNe can capture the full range of mixing patterns in
networks, including homophily and heterophily (Lemma2).

✓ Generality: ProNe can capture both self-proclivity (mixing patterns of
a single attribute) and cross-proclivity (mixing patterns of any pair of
attributes) (Lemma 3).

✓ Consistency: In the absence of structural correlation of nodal attributes,
ProNe consistently returns a value of zero in expectation (Lemma 4).

✓ Scalability: ProNe can quantify the mixing patterns, a.k.a. structural cor-
relation, in O(m) time where m is the number of edges in the network and is
fast, processing million-scale graphs in a few seconds.

ProNe is also highly useful, with applications in (i) data imputation to guess
the values of missing attributes of nodes, (ii) marketing for ad-placement, (iii)
personalization for early depression detection and (iv) privacy protection and
anonymization of social network.
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