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Abstract—This document supplements [1] by giving proofs of
theoretical results and details on additional experiments.

I. PROOFS FROM SEC. IV
Proof of Theorem 1. Using Principle 3, w(T ) is written as:
w(x:t,y:t,yt+1:=0) =

∑∞
τ=0 γ

τp(`t+τ=1|x:t,y:t,yt+1:=0)
Marginalizing over the latent variables at time
t and using the Markov property, we ob-
tain

∑
rt,st

∑∞
τ=0 γ

τp(rt, st|x:t,y:t,yt+1:=0) ×
p(`t+τ=1|rt, st,yt,yt+1:=0). Thus, we derive:

w(T ) =
∑
rt,st

p(rt, st|x:t,y:t,yt+1:=0)︸ ︷︷ ︸
latent variable distribution at t

·w∗(rt, st,yt)︸ ︷︷ ︸
early warn. score

(1)

where w∗(r, s, y) is the early warning score output for a
trajectory starting in (r, s) with an intervention y:

w∗(r, s, y) =

∞∑
τ=0

γτp(`t+τ=1|rt=r, st=s,yt=y,yt+1:=0)

(2)
Observing that w∗ does not depend on the history of the
trajectory and hence need to be computed exactly once a priori
(Claim 1) and that the latent variable distribution at every time
step can be updated efficiently online (Claim 2) completes the
proof. �

Claim 1 (Precomputation of Early Warning Table). The R×
S×Y early warning table containing all early warning scores
w∗(r, s, y) can be precomputed in O

(
R2S2(RS + Y )

)
time

complexity.

Proof. Unrolling the sum in Eq. (2) over a single step in the
future and marginalizing over the latent state and residue at
the next time step, we derive the following recursive relation:

w∗(r, s, y) = ρs+γ
∑
r′,s′

p(r′|r, y)·p(s′|s, r′)·w∗(r′, s′, 0) (3)

For y=0, we construct the system of linear equa-
tions w∗(r, s, 0) = ρs + γ

∑
r′,s′ p(r

′|r, 0) · p(s′|s, r′) ·
w∗(r

′, s′, 0),∀ r, s which can be solved by matrix inversion
in O

(
R3S3

)
. Plugging these in Eq. (3), other scores are

precomputed in an additional O
(
R2S2Y

)
time. �

Claim 2 (Online Computation of Latent Variables). The
distribution p(rt, st|x:t,y:t,yt+1:=0) of latent variables at
every time step t for an evolving trajectory T = (x:t,y:t)
can be computed using dynamic programming in O

(
R2S2

)
time per new pair (xt,yt).

Proof. Define ψt(r, s) = p(x:t,y:t, rt=r, st=s,yt+1:=0) as
the probability of observing measurements and interventions
till time t, landing in latent variables (r, s) at time t and
observing no interventions thereafter. In terms of ψ, the
required probability is ψt(r, s)/

∑
r′,s′ ψt(r

′, s′). Thus, we
need only show how to compute ψt(r, s) efficiently.

The base case is ψ1(r, s) = Φ(r, s) · p(x1|s) · π′(y1|r, s)·∏∞
τ=2

∑
rτ ,sτ

p(rτ , sτ |rτ−1, sτ−1,yτ−1)·π0(yτ |rτ , sτ ) which
can be simplified using Eq. (7) as Φ(r, s) ·p(x1|s) ·π′(y1|r, s).
Thus, ψ1 can computed in O

(
RS
)

time.
In a similar way, for t>1, we derive: ψt(r, s) =∑
r′,s′ ψt−1(r′, s′)·p(r′|r,yt−1)·p(s|s′, r)·p(xt|s)·π′(yt|r, s)

which can be computed in O
(
RS
)

for every r, s from the
latent distribution ψt−1 at the previous time step. �

Proof of Theorem 2. Consider two trajectories T1, T2 with fu-
ture event probability functions f1 and f2 and cumulative
future event probability functions F1 and F2 respectively.
For i = 1, 2, let Fi(−1) = 0 so that fi(τ) = Fi(τ) −
Fi(τ − 1) ∀ τ = 0, 1, . . .. Using Eq. (6), w(T1) − w(T2) =∑∞
τ=0 γ

τ (f1(τ)− f2(τ)).
Principle 1 (Dominance): Suppose f1 ≥ f2. Then, f1(τ)−

f2(τ) ≥ 0 ∀ τ and hence w(T1)−w(T2) ≥ 0. Suppose instead
that f1 > f2 with C = {τ : f1(τ) > f2(τ)} 6= {}. As f1(τ) =
f2(τ) ∀ τ 6∈ C, we obtain w(T1)−w(T2) =

∑
τ∈C γ

τ (f1(τ)−
f2(τ)) > 0 as desired.

Principle 2 (Precedence): In terms of the cumula-
tive future event probability function, w(T1) − w(T2) =∑∞
τ=0 γ

τ [F1(τ)−F1(τ−1)−F2(τ)+F2(τ−1)] =
∑∞
τ=0(γτ−

γτ+1)(F1(τ) − F2(τ)) where γτ − γτ+1 > 0 as γ ∈ (0, 1).
Suppose F1 ≥ F2. Then, F1(τ) − F2(τ) ≥ 0 ∀ τ and hence
w(T1) − w(T2) ≥ 0. Suppose instead that F1 > F2 with
C = {τ : F1(τ) > F2(τ)} 6= {}. As F1(τ) = F2(τ) ∀ τ 6∈ C,
we obtain w(T1) − w(T2) =

∑
τ∈C(γ

τ − γτ+1)(F1(τ) −
F2(τ)) > 0 as desired.

Principle 3 (Intervention-Awareness): This follows by con-
struction from the first line in the proof of Theorem 1. �

II. EXPERIMENTS ON SYNTHETIC DATA

Synthetic settings allows us to control the level of interven-
tions in the data without incurring the associated high human
costs, e.g., student drop out, patient death. Thus, it provides
a valuable test bed to study the ability of methods to pro-
duce credible early warning scores under various intervention
policies in the training data.



TABLE I
ACCURACY (AUC) ON SYNTHETICFLU WHEN THE TRAINED ON DATA

UNTAINTED (-I) AND TAINTED (+I) BY INTERVENTIONS

Setting CoxT2E LinearFLA LinearVLA SmokeAlarm

Untainted set (-I) 0.9189 0.9188 0.9185 0.9993
Tainted set (+I) 0.8845 0.8127 0.8452 0.9985

Drop in accuracy 3.74% 11.5% 7.98% 0.08%

We generate a SyntheticFlu dataset with temperature and
white blood cell (WBC) count measurements and aspirin
interventions akin to [2]. Values for temperature and WBC
count are independently drawn from a Hidden Markov Model
with 10 latent states {0, 1, . . . , 9} such that the observed value
in state s is normally distributed as N (s, σ2). Each subject
begins in a state s≤3 for temperature and WBC count. For
a stable measurement, a state s decreases to s−1, remains
the same and increases to s+1 during the next hour with
probabilities 0.2, 0.7 and 0.1 respectively. The corresponding
values for an escalating measurement are 0.2, 0.3 and 0.5 so
that the value tends to increase. Subjects in states s ∈ {8, 9}
for temperature or WBC count have flu. When either reaches
state 9, the subject expires and their trajectory terminates.
Aspirin is given with probability p when temperature is in
states 6-8. When administered, it decreases the temperature
by six states over the next three hours. With probability 0.4, it
may also stabilize the temperature to prevent future escalation.
It has no effect on WBC count, however. Aspirin interventions
are binary (ignoring quantity administered). All values are
recorded at hourly intervals for a maximum duration of 50
hours for each trajectory.

We create two training datasets: set (+I) with aspirin in-
terventions and set (-I) without. We use a mixture of aspirin
probabilities p ∈ {0.5, 0.3, 0.1} for set (+I) and set p=0 for
set (-I) and test data. We set the noise level σ2 to 0.04. All
training and test datasets contain 5000 trajectories each, with
40% of the population being healthy and the rest developing flu
due to an escalating measurement (30% each). Each method
is trained on both sets in turn and tested on the same held-out
set of intervention-free data.

For SmokeAlarm, we set S=16 states, discount factor
γ=0.75, and activation prior in the ratio 2:1 (scaled to the
dataset size) to incorporate that aspirin lasts around 3 hours
(in expectation). Linear regression baselines use the three most
recent measurements and interventions (i.e., shingle size 3) to
predict event within/at τ∗=9 hours in the future. Accordingly,
we use L=9 hours as the prediction window for evaluation.

[Q1] Accuracy: Table I summarizes the AUC of all meth-
ods using sets (+I) and (-I) for training. Bold indicates the
best performing method for each metric. First, note that all
methods perform their best when trained using set (-I) whose
no-intervention policy (p=0) matches that of the test set. The
change from set (-I) to set (+I) hurts baselines the most, with
accuracy dropping up to 11.5%. In contrast, the performance
of SmokeAlarm remains comparable, suggesting that learning
separate models for the presence and absence of interventions
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Fig. 1. Model learned on SyntheticFlu set (+I) peppered with interventions
shows that SmokeAlarm successfully learns the evolution of measurements
(and hence the risk of flu) in the presence and absence of aspirin.

pays off. Thus, it is able to produce early warning scores
untainted by interventions from limited intervention-free data.

[Q2] Interpretability: Fig. 1 depicts the model learned by
SmokeAlarm on set (-I) in the absence of aspirin (left) and
under a single aspirin intervention followed by an intervention-
free future (right). States (numbered vertices) are plotted using
the mean of their temperature and WBC count distributions.
Squares indicate states with flu, i.e., a high value of p(`=1 | s).
Colors (yellow=healthy, red=sick) represent their early warn-
ing scores in the presence or absence of aspirin, as applicable.
Dark and thick arrows depict probable state transitions.

In both figures, healthy states with low temperature and
WBC count have the lowest scores (yellow), flu states {1, 5}
with high temperature or WBC count have the highest scores
(red), and the red shade lightens towards the origin. Orange
circular vertices are the early warning states, where there is
no flu, but the score is high and an alarm is triggered. Without
aspirin (left), red fades symmetrically along both axes because
the measurements evolve and contribute to flu similarly. With
aspirin (right), red fades faster along temperature axis going
from state 5 to 7. The yellower colors of states 6 and 12 in
the presence of aspirin showcases a decreased risk of flu and
is consistent with the high probability ‘becoming-healthier’
transitions from states 5 to 12 to 6 to 9. Thus, SmokeAlarm
successfully learns that without aspirin, high temperature states
{6, 12} are as dangerous as high WBC count states {3, 8} with
respect to flu; however, aspirin lowers temperature and hence
also the imminent danger of flu from high temperature states.

[Q3] Discoveries: Fig. 2 depicts two representative
trajectories–with different ways of flu escalations–from test
data. The top panels show the temperature and WBC count
measurements; the person has the flu if at least one of them
cross the dotted line. The bottom panels plot the degree
of intervention-awareness violation (DoV) which measures
the extent to which Principle 3 is violated. If the early
warning scores produced by a method on a trajectory are
w+ and w− when trained on sets (+I) and (-I) respectively,
DoV= |w+−w−|. Ideally, w−=w+ and DoV=0 as the under-
lying risk of flu does not depend on training data. However,
Fig. 2 reveals that the baselines produce a large DoV in at
least one type of flu escalation. Notably, DoV is high for
t≥15 which is the crucial period for early warning. Only
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(a) A SyntheticFlu trajectory with temperature escalation (b) A SyntheticFlu trajectory with WBC count escalation

Fig. 2. SmokeAlarm is intervention-aware: Degree of intervention-awareness violation (DoV) on representative trajectories confirms that only SmokeAlarm
yields a consistently low DoV within the gray ‘ideal’ band. The baselines have high DoV which grows in t>15, which is the crucial period for early warning.

Fig. 3. SmokeAlarm scales linearly with input size N

SmokeAlarm yields a consistently low DoV lying within the
gray ‘ideal’ band at all times and for both flu escalations.

[Q4] Scalability: We vary the input size, i.e., total number
of time steps across all trajectories, and measure the average
time taken (excluding IO operations) for early warning scoring
(testing phase) over five runs. Fig. 3a yields a line with slope 1
in log-log scales; thus, the running time is linear on the input
size N . The time for model inference (training phase) is also
linear, but it is not shown here.
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