
SEDANSPOT: Detecting Anomalies in Edge Streams

Dhivya Eswaran
Carnegie Mellon University, Pittsburgh, USA

deswaran@cs.cmu.edu

Christos Faloutsos
Carnegie Mellon University, Pittsburgh, USA

christos@cs.cmu.edu

Abstract—Given a stream of edges from a time-evolving
(un)weighted (un)directed graph, we consider the problem of de-
tecting anomalous edges in near real-time using sublinear memory.
We propose SEDANSPOT, a principled randomized algorithm,
which exploits two tell-tale signs of anomalous edges: they tend
to (i) occur as bursts of activity and (ii) connect parts of the graph
which are sparsely connected. SEDANSPOT has the following de-
sirable properties: (a) Burst resistance: It provably downsamples
edges from bursty periods of network traffic, (b) Holistic scoring:
It takes into account the whole (sampled) graph while scoring
the anomalousness of an edge, giving diminishing importance to
far-away neighbors, (c) Efficiency: It supports fast updates and
scoring and hence can be efficiently maintained over stream;
further, it can detect anomalous edges in sublinear space and
constant time per edge. Through experiments on real-world data,
we demonstrate that SEDANSPOT is 3× faster and 270% more
accurate (in terms of AUC) than the state-of-the-art.

I. INTRODUCTION

Time-evolving (un)weighted (un)directed graphs, where

edges and vertices arrive continuously over time, are becoming

increasingly ubiquitous, e.g., phone call, instant messaging, e-

mail and IP-IP networks. In these settings, edges are generated

in increasing order of timestamps, giving rise to edge streams.
We consider the problem of near real-time anomaly de-

tection in such edge streams, where the goal is to detect

whether an incoming edge is anomalous or not, as soon as it

is received. While online graph anomaly detection is a well-

explored research area, most methods assume edges have been

aggregated into graph snapshots (see Sec. II). In contrast, we

seek algorithms which directly process the edge stream to flag

anomalies in near real-time, which is crucial in order to curtail

the impact of malicious activities and kick-start recovery pro-

cesses in a timely manner. Moreover, given that the number

of vertices is not known a priori and can grow as the stream

progresses, the algorithm should operate in memory sublinear

in graph size. Informally, the problem we set out to solve is:

Informal Problem 1. Given an edge stream E={e1, e2, . . .}
from a/an (un)weighted (un)directed graph, detect whether ei
is anomalous, in near real-time using sublinear memory.

As the definition of anomaly can be context-dependent, we

focus on detecting edges which connect sparsely-connected
parts of graph (bridge edges). Fig. 1 illustrates this using an

edge stream from an unweighted directed graph where the

edges received until time t=0 form two clusters of vertices

{(a1, . . . , a5), (b1, b2, b3)}. Thus, edges a4→b2, a4→b1 and

a4→b3 (occurring at t=7) which connect these otherwise dis-

connected clusters of vertices should be flagged anomalous.

Fig. 1. An edge stream with a burst of three anomalous ‘bridge’ edges (red).

The simultaneous occurrence of these ‘red’ edges is not co-

incidental. Prior work has shown that fraudulent or important

events in many applications indeed occur as spikes or bursts of
activity [1] – e.g., network security threats (port-scan, denial-

of-service), scams (malicious entities attacking many victims

before they get exposed), occasions (festivals producing a burst

of longer-than-usual phone calls), etc. Anomaly detection ap-

proaches which do not account for this observation ( [2], [3])

tend to miss several anomalies, e.g., a4→b3 being masked as

normal by the recent a4→{b1, b2}. Note that, while anomalous

activity tends to occur as bursts, burstiness does not necessarily

signify an anomaly: in dynamic situations like network traffic,

normal activity can also be bursty. Thus, for reliable detection,

we need to combine both temporal and structural information.

As we will see, the proposed SEDANSPOT does precisely this.

Given the running time and memory constraints of Prob-

lem 1, SEDANSPOT (Streaming EDge ANomaly SPOTter)

maintains an online sample of edges (using SEDANSAM-

PLER) which is then used to score the anomalousness of any

new edge (via SEDANSCORER). It has the following proper-

ties. (a) Burst resistance: SEDANSAMPLER provably down-

samples edges from bursts of activity, (b) Holistic scoring:
SEDANSCORER scores the anomalousness of edges by taking

into account the whole (sampled) graph, giving diminishing

importance to far-away neighbors, (c) Efficiency: SEDANSPOT

supports fast updates and scoring and hence can be efficiently

maintained over stream; further, it can detect anomalous edges

in sublinear space and constant time per edge.

We use publicly-available datasets and open-source our code

at www.github.com/dhivyaeswaran/sedanspot. The supple-

mentary material (with proofs and additional experiments) is at

www.cs.cmu.edu/deswaran/papers/icdm18-sedanspot-sup.pdf.

II. RELATED WORK

Graph anomaly detection is a well-studied problem [4], [5].

Here, we review only online graph anomaly detection methods.

Graph streams: Many methods assume that the raw edge
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Online (operate on edge streams) � � � �
Generality (weighted/directed) � �
Burst resistance N/A �
Holistic scoring � �
Efficiency (sublinear memory) ? � �
Efficiency (constant time per edge) N/A � � �

stream has been processed into a stream of graph snapshots

(each containing edges from a given duration) before detecting

anomalies. Among many others, these include: [6] to detect

the sudden (dis)appearance of dense subgraphs using sketch-

ing, [7] and [8] to detect change points using graph parti-

tioning/decomposition, [9] to detect evolutionary community

outliers, [10] and [11] to compare consecutive graph snapshots

through similarity/distance functions related to random walks.

Edge streams: In contrast, methods operating directly on

the edge stream are relatively few. These include: GOUTLIER

[2] to score the likelihood of each edge in the stream based on

a structural reservoir sample of edges, [12] to detect anomalous

nodes using egonet-level Principal Component Analysis and

[3] to score edge anomalousness in the stream based on its

prior occurrence, preferential attachment and mutual neighbors

(homophily). [13] is related, but applies only when multiple
graphs with typed nodes and edges evolve simultaneously.

As such, none of the prior methods have all the desirable

properties that SEDANSPOT exhibits, as shown in Table I.

III. BACKGROUND

Reservoir sampling [14] is a classic algorithm to maintain

a fixed-size uniform sample of elements in a stream. Weighted

reservoir sampling [15] is used when elements are to be sam-

pled with different weights. When the stream contains edges

from a graph, several sampling mechanisms are available [16],

but none of them downsamples edges from bursty periods.

Random walk with restart (RWR) relevance score of v
w.r.t. u is the steady state probability that the surfer will finally

remain at v during a random walk from u, with restart prob-

ability α [17]. Concretely, if Ā is the n × n row-normalized

adjacency matrix and qu is the n-dimensional binary vector

where all but the uth entry are zeros, the vector of RWR

relevance scores ru of all vertices w.r.t. u is given by:

ru = (1− α)ĀT ru + αqu (1)

As computing Eq. (1) directly can be expensive, approxima-

tions such as local random walks (which we use) have been

successfully applied, e.g., in link prediction [18] and recom-

mendation [19]. Existing work on RWR relevance score com-

putation for edge streams either assume a single start vertex

known ahead of time [20] or maintain all-pair relevance scores

[21]; thus they are not applicable to our setting.

IV. PROBLEM FRAMEWORK

Let E = {ei}∞i=1 = {e1, e2, . . . , eL, . . .} be the stream

of edges from an underlying time-evolving graph G. Each

element ei in the stream is 4-tuple (ui, vi, wi, ti) of its source
vertex ui ∈ V , its destination vertex vi ∈ V , its edge weight wi

and its time of occurrence ti and represents the addition of this

edge to the graph G. Here, V is the set of all vertices, which is

not known a priori but changes as G evolves. However, each

vertex is assumed to have a unique identifier, e.g., user ID or

IP address, that is fixed over time.

Here, G can be a multigraph, i.e., two vertices may be

connected multiple times with different weights. Many edges

could arrive simultaneously, i.e., ti+1≥ti (equality allowed).

The edges can also be weighted (wi=1 ∀ ei, if unweighted)
and/or have direction (assume a ‘fake’ (vi, ui, wi, ti) for every
(ui, vi, wi, ti) when ui �=vi, if undirected). We will overload

t(e) to denote the timestamp of edge e.
Our goal is to detect anomalous edges by leveraging their

temporal and spatial signals, i.e., they tend to (i) occur as

bursts of activity and (ii) connect sparsely-connected parts of

the graph. To do this quickly using bounded memory, we main-

tain a fixed-size sample of the edges seen thus far and use it

to score the anomalousness of any new edge. Thus, Problem 1

can be subdivided into two subproblems, each incorporating

one of the above signals of anomalousness, as follows:

Informal Problem 2 (Edge sampling). Given an edge stream
E and S ∈ N, maintain an online sample S of S edges while
downsampling bursts of activity.

Informal Problem 3 (Anomaly scoring). Given a sample of
edges S and a new edge ei, design an anomaly scoring func-
tion yi = f(ei;S) to give a higher score to edges connecting
parts of the graph which are sparsely connected.

V. PROPOSED METHOD

Alg. 1 gives the high-level pseudocode of SEDANSPOT.

Every edge ei in the stream is first compared to the current

sample of edges via SEDANSCORER (Sec. V-B, addressing

Problem 3) to determine its anomaly score. The sample is sub-

sequently updated based on this edge using SEDANSAMPLER

(Sec. V-A, addressing Problem 2). We describe the algorithm

below assuming directed edges. Extensions and theoretical

analysis are discussed in Sec. V-C and Sec. VI respectively.

A. Edge sampling using SEDANSAMPLER

Given a sample size S ∈ N, the core idea of SEDANSAM-

PLER is to maintain a rate-adjusted sample S of S edges.

Definition 1 (Rate-adjusted sample). S is said to be a rate-
adjusted sample from a stream E iff Pr [e ∈ S] ∝ 1/r(e) ∀ e ∈
E, where r(e) is the edge rate at the time of occurrence of e.

Here, r(·) is a measure of edge rate such that a larger

value signifies a more intense burst of edges. Intuitively, rate-

adjusted reservoir sampling ensures that, if a region R of

an underlying graph G is densely connected solely because

of attack edges which occurred during bursts of activity, the
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Algorithm 1 SEDANSPOT

Input: edge stream E = {ei}∞i=1

Output: stream of anomaly scores {yi}∞i=1

1: SEDANSAMPLER.INITIALIZE()

2: SEDANSCORER.INITIALIZE()

3: for edges Et received at time t from stream E do
4: for ei ∈ Et do
5: yi ← SEDANSCORER.ANOMALY_SCORE(ei)
6: erem, eadd ← SEDANSAMPLER.SAMPLE(ei)
7: SEDANSCORER.ADD(eadd) if eadd is not None

8: SEDANSCORER.REMOVE(erem) if erem is not None

9: yield yi

Algorithm 2 SEDANSAMPLER

Parameter(s): sample size S
1: procedure INITIALIZE

2: S ← MinHeap-PriorityQueue(size S)
� stores top S edges with the highest priorities; incurs O (logS)

addition, O (1) MPE (min. priority element) retrieval costs

3: procedure SAMPLE(edge e)
4: x ∼ Uniform[0, 1]
5: p← xr(e) � priority of e; r(e) is defined in Eq. (2)
6: if S.is_full() then
7: e′, p′ ← H .peek() � current MPE and its priority
8: if p′ < p then
9: S.pop() � remove current MPE, i.e., e′

10: S.insert(edge e with priority p)
11: return e′, e
12: else � leave sample unchanged
13: return None, None

14: else � heap is not full, simply add e

15: S.insert(edge e with priority p)
16: return None, e

corresponding region in the sampled graph induced by S still

remains somewhat sparsely connected. This sets the stage to

detect a subsequent edge belonging to the same attack and oc-

curring in the same region R as an anomaly w.r.t. the sample.

While other characterizations are possible, we use edge rate

r(e) defined below due to its theoretical guarantee (Thm. 1)

and its ease of computation in a stream using O (1) space:

r(e) =
∣∣Et(e)

∣∣ / (t(e)− tbef(e)) (2)

Here, t(e) is the timestamp of edge e, Et(e) is the set of

edges which arrive at time t(e) (including e) and tbef(e) =
maxe′ s.t. t(e′)<t(e) t(e

′) denotes the timestamp of the most

recent edge which arrived strictly before e. The larger the

number of edges occurring at t(e) or the smaller the time

gap between e and the edge(s) occurring before, the more

intense is the burst of edges. Accordingly, Eq. (2) ensures that

r(e) is higher. It also assigns the same rate to edges arriv-

ing simultaneously. Having now defined r(·), a rate-adjusted

sample can be easily maintained using weighted reservoir sam-

pling [15]. The resulting algorithm (Alg. 2) uses a MinHeap-

PriorityQueue data structure for efficient O (logS) updates.

Algorithm 3 SEDANSCORER

Parameter(s): restart probability α, number of walks N
1: procedure INITIALIZE

2: A← Hash table mapping vertices to their LATs

3: procedure ADD(edge e = (u, v, w, t))
4: A[u].increment(v, w)

5: procedure REMOVE(edge e = (u, v, w, t))
6: A[u].decrement(v, w)

7: procedure SAMPLE_NEIGHBOR(vertex u∗, edge e =
(u, v, w, t))
� samples neighbor of u∗ from S ∪ {e} based on edge weight

8: if e is None or u∗ �= u then
9: return A[u∗].random_key()

10: else
11: W ← w + out-weight of u∗ in S ∪ {e}
12: return v w.p. w/W else A[u∗].random_key()

13: procedure VISIT_FRACTION(vertex u, vertex v, edge e)
� outputs an estimator ŝ (v | u;S ∪ {e}) for relevance score

14: initialize num_steps ← 0, num_visits ← 0
15: for i = 1, . . . , N do
16: walk length � ∼ Geometric(α)
17: num_steps ← num_steps + �
18: current vertex a← u
19: for j = 1, . . . , � do
20: num_visits ← num_visits + I (a == v)
21: a← SAMPLE_NEIGHBOR(a, e)
22: break if a has no outgoing edges in S ∪ {e}
23: return num_visits/num_steps
24: procedure ANOMALY_SCORE(edge e = (u, v, w, t))
25: visit_frac_before ← VISIT_FRACTION(u, v, None)
26: visit_frac_after ← VISIT_FRACTION(u, v, e)
27: return max(0, visit_frac_after − visit_frac_before)

B. Anomaly scoring via SEDANSCORER

Intuitively, given a sample of edges, a new edge e is more

surprising (anomalous) if adding it to the sample produces a

larger change in the proximity (distance) between its incident

vertices. Thus, SEDANSCORER scores the edge anomalousness

as f(e;S) = MPI(e;S) where MPI(·) is as defined below:

Definition 2 (Marginal proximity increase). The marginal
proximity increase measure of edge e from source u to desti-
nation v w.r.t. a set of edges S is given by

MPI(e;S) = s (v | u;S ∪ {e})− s (v | u;S) (3)

Here, s (v | u;S) is a measure of directed vertex proximity
between source u and destination v based on edges S, such
that greater the number of shorter, heavily weighted paths

from u to v in S, the higher is its value. We use the RWR

relevance score in Eq. (1) for this purpose, as it is principled

(incorporating direct and indirect paths), asymmetric, bounded

in [0, 1] and can be estimated fast using local random walks.

Local random walks are a principled way to estimate Eq. (1)

in time nearly independent of sample size S. Alg. 3 gives the

pseudocode. A is a data structure holding the current sample of
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edges. Given parameters N and α, VISIT_FRACTION() outputs

an estimate ŝ (v | u;S ∪ {e}) by performing N local random

walks. Each time, a walk length � is sampled based on the

restart probability α (line 16). Then, � steps (possibly less if

there are dead ends) of a random walk starting from source

vertex u are taken, each time sampling a neighbor of the

current vertex proportional to edge weight in S ∪ {e} (line

17-22). The ratio of the number of times v is visited in this

process to the total walk length is returned as the estimate ŝ.
As the sampling routine in Alg. 2 is used more often than

updates, further optimization is possible using Alias method

[22]. Given an arbitrary discrete distribution with k outcomes,

Alias method can produce a sample in O (1) time by incurring

an O (k) preprocessing cost upfront. Since neighbor sampling

is equivalent to sampling from a discrete distribution, we pro-

pose to use a hash table of Lazy Alias Tables (LATs), one

LAT per vertex, as our data structure A. Assuming the LATs

are up-to-date, SAMPLE_NEIGHBOR() takes only O (1) time.

When an edge is added to or removed from the sample, only

the LATs of affected vertices have to be updated. Moreover,

even these updates can be done in a lazy fashion, i.e., only

when we need to sample a neighbor of an affected vertex.

Note that, when computing ŝ (v | u;S ∪ {e}) in Eq. (3), the

edge e should not actually be inserted into the data structure

– this would force unnecessary updates to LATs, incurring a

large overhead. See line 12 of Alg. 3 for how to avoid this.

C. Extensions

SEDANSPOT can be extended in many ways: (i) to handle

undirected (by symmetrizing the MPI measure in Eq. (3)) and

bipartite settings (by allowing forward and backward jumps);

(ii) to bias the sample towards recent edges by modifying line

5 of Alg. 2 to incorporate edge recency; (iii) sampling edges

proportional to any monotonically decreasing function of their

rate, f(r(e)), to downsample bursts. Using f(x)=1/x leads

to Thm. 1, but other variants may work better in practice.

VI. THEORETICAL ANALYSIS (PROOFS: SUPPLEMENTARY)

We begin by showing that Alg. 2 is indeed correct:

Lemma 1 (Correctness of Alg. 2). Alg. 2 maintains a rate-
adjusted sample S, as defined in Def. 1, from stream E.

Importantly, SEDANSAMPLER ensures that the number of

sampled edges belonging to a given time interval only depends

on its duration and not on the number of edges occurring

during it. In the following, a time tick τ is said to be anchored

if some edge occurred at time τ , i.e., ∃ edge e s.t. τ=t(e).

Theorem 1 (Burst resistance). Consider time ticks τ0=0 and
τ1 ≤ τ2 . . .≤τK which are anchored. Let Hk be the set of
edges arriving in time interval Ik := (τk−1, τk] of duration
�k = τk − τk−1. If S is the rate-adjusted sample till time τK ,

Pr [e ∈ Hk | e ∈ S] = �k/
K∑

k=1

�k, ∀ k (4)

which is independent of |Hk|.

This is advantageous given the tendency of anomalous edges

to occur as bursts of activity: even though many attack edges

occur in a small duration, rate-adjusted sampling ensures that

only a few of them are stored in the sample. See Example 1.

Example 1. Consider a ‘normal’ process generating 1M
edges over 100 hours followed by an attacker producing 0.5M
edges in 10 minutes. Using Eq. (4), the expected number of
attack edges in the sample is 10/(100× 60 + 10) < 0.2%. In
contrast, the sample S ′ produced by Uniform Reservoir sam-
pler, which samples edges uniformly, i.e., Pr [e ∈ S ′] ∝ 1 ∀e,
has 0.5M/1.5M = 33.3% attack edges in expectation.

Next, we show that SEDANSPOT meets the sublinear mem-

ory and constant time per edge requirements of Problem 1.

Lemma 2 (Constant scoring time per edge). SEDANSPOT

takes at most O (N/α) time in expectation (usually lesser in
practice) to compute anomaly score of an edge (line 5, Alg. 1).

Lemma 3 (Sublinear memory). SEDANSPOT takes
O (S log |V|) memory to process each edge.

We also show that updates of SEDANSPOT are fast, amor-

tized over the stream length L, as the updates become less

frequent as the stream progresses. Let davg be an upper

bound on the average vertex degree in the sample and let

Hn =
∑n

i=1 i
−1 be the sum of first n terms in the harmonic

series. Also, let the edge rate be bounded in [rmin, rmax]. Then,

Lemma 4 (Fast amortized updates per edge). SEDANSPOT

takes at most O
(

log S+davg

L ·
(
S + rmin

rmax
(HL −HS)

))
amor-

tized time in expectation for updates (lines 6-8, Alg. 1).

AsHn = log n+γ+O (
1
n

)
where γ is the Euler-Mascheroni

constant, the amortized update time per edge remains small.

VII. EXPERIMENTS

We implement all methods in C++ and run experiments on

MacOS High Sierra with 2.7 GHz Intel Core i5 processor and

16 GB main memory.

Datasets. We shortlist datasets where the anomalies are

verifiable and/or interpretable. These are: (a) DARPA [23]

<srcIP, dstIP, 1, time>: consisting of 4.5M directed edges

of network traffic from 9.5K source IPs to 23.4K destination

IPs over 87.7K minutes. 60% edges are labeled as anomalous

(belonging to attacks, which mostly occurred in infrequent

bursts). (b) DBLP [24] <author1, author2, 1, pub_year>: con-
sisting of 55.5K authors and 3.7M coauthorships (undirected

edges) over 20 years. (c) ENRON [25] <sender, receiver, 1,
date>: containing 50K e-mails (directed edges) among the

151 people from May 1999 to April 2002. The supplementary

material contains a detailed description.

Baseline. We use RHSS [3] (with δ=ε=0.001), the only

edge stream anomaly detector which can be extended to di-

rected and weighted edges (using separate sketches for in- and

out- neighborhoods). We use the negative likelihood of edge

probabilities as anomaly scores, giving equal importance to

sample, preferential attachment and homophily scores.
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TABLE II
PRECISION OF SEDANSPOT AND BASELINE (RHSS) AT DIFFERENT CUT-OFF RANKS k. BOLD SIGNIFIES HIGHEST VALUE IN EACH COLUMN AND

UNDERLINE SHOWS SIGNIFICANT DIFFERENCES (p-VALUE ≤ 0.01) W.R.T. BASELINE ACCORDING TO A TWO-SIDED MICRO-SIGN TEST [26].

precision@
Method 200K 400K 600K 800K 1000K 1200K 1400K 1600K 1800K

SEDANSPOT 1.00 (0.00) 0.97 (0.02) 0.93 (0.01) 0.89 (0.01) 0.85 (0.01) 0.83 (0.01) 0.81 (0.01) 0.80 (0.01) 0.79 (0.01)
RHSS 0.49 (0.01) 0.36 (0.00) 0.29 (0.00) 0.29 (0.01) 0.32 (0.01) 0.35 (0.00) 0.36 (0.00) 0.36 (0.00) 0.33 (0.00)

(a) (b) (c)

Fig. 2. SEDANSPOT (a) achieves better recall and precision on DARPA dataset
for all cut-off ranks k, (b) outperforms the baseline in terms of both accuracy
and speed, (c) scales linearly with the input stream length.

Evaluation metrics. All the methods output an anomaly

score per edge (higher is more anomalous). Sorting the edges

in descending order of their scores, we count the number of

edges ck flagged correctly as anomalous among the top k
edges, for every cut-off rank k ∈ N. If C is the total number of

ground truth anomalies, we compute: precision@k = ck/k and

recall@k = ck/C. We also report AUC (Area Under ROC).

Experimental design. Q1) Accuracy: How well does

SEDANSPOT detect anomalies compared to the baseline? What

is the trade-off w.r.t. running time? Q2) Scalability: How does

it scale with input stream length L? Q3) Discoveries: Does

it lead to interesting discoveries in practice? Q4) Parameters:
How do accuracy and running time depend on parameters S,N
and α? We answer Q1-3 here and Q3-4 in the supplementary.

Q1) Accuracy. We use N=100 walks, α=0.15 restart prob-

ability (recommended value [27]) and S=10K sample size.

Precision, recall: Table II tabulates precision@k of RHSS

and SEDANSPOT at 9 cut-off ranks k ∈ [200K, 1800K].
Despite the use of randomization, the standard deviations in

results (shown in brackets) were low (≤0.02) indicating a

fairly consistent performance across multiple runs. We see that

SEDANSPOT outperforms RHSS on all considered k values,

achieving 100−215% (statistically significant) improvements

in precision. Further, a plot of precision vs. recall for all cut-

off ranks (Fig. 2a) shows that SEDANSPOT (solid blue) lies

completely above the baseline (dashed red), indicating that the

performance gains generalize to all cut-off ranks k.
Accuracy vs. running time: Fig. 2b plots accuracy (AUC)

vs. running time (in minutes, excluding I/O) averaged over

five runs. Error bars are very low and hence omitted. We see

that SEDANSPOT achieves a much higher accuracy (=0.63)

compared to the baseline (=0.17), while also running faster (8

vs. 24 mins). This is a 270% accuracy improvement in 3×
less processing time. The main overhead of RHSS turns out

to be the computation of pairwise independent hash functions.

Q2) Scalability. We vary the number of edges L in the input

stream in eight logarithmic steps in [20K, 2.56M ], setting

S=10K,N=100 and α=0.15. Fig. 2c, plotting running time

vs. L in log-log scales, reveals a line of slope 1.0. This con-

firms the linear scalability of SEDANSPOT w.r.t. input stream

length, thanks to its constant processing time per edge. Note

that SEDANSPOT processes 2.56M edges in ∼ 4 minutes and

thus is very fast (speed of about 10.1K edges per second).

Q3) Discoveries on DARPA (rest in the supplementary).
To understand the relative contributions of SEDANSAM-

PLER and SEDANSCORER to the accuracy gain on DARPA

dataset, we consider three intermediate versions of algorithms,

modifying the baseline RHSS (which originally maintains

counts over the whole stream, with ‘no sampling’) by (a) sam-

pling alone using one of UR-SAMPLER (Uniform Reservoir)

or SEDANSAMPLER, (b) scoring alone using SEDANSCORER,

or (c) both. Fig. 3a summarizes the results.

Using RHSS as scorer gives the same AUC with or without

Uniform Reservoir sampling. This is because UR-SAMPLER,

selecting each edge with equal probability, ‘preserves’ the

fraction of anomalous edges while sampling, thus leading to

similar results. Switching to SEDANSAMPLER improves AUC

by 165%. Why? Fig. 3b, plotting the cumulative count of

normal (solid blue) and anomalous (dashed red) edges over

time, contrasts the smooth increase of normal edges to the

step-like behavior of red curve which results from the bursty

nature of network attacks. SEDANSAMPLER exploits this via

rate-adjusted sampling which downsamples edges from bursty

time periods and thus significantly decreases the fraction of

anomalous edges (‘corruption’) in the sample, as shown in

solid blue curve of Fig. 3c (while the dashed red curve of UR-

SAMPLER stabilizes around 0.6, which is exactly the fraction

of anomalous edges in this dataset). The decreased ‘sample

corruption’ finally paves the way to better anomaly scoring.

Using SEDANSCORER over the baseline RHSS scoring

function always helps, regardless of the sampling algo-

rithm used, as seen from the improved accuracy values in

Fig. 3a (0.17→0.57 with UR-SAMPLER, 0.45→0.63 with

SEDANSAMPLER). We attribute this to the holistic edge

anomaly scoring by SEDANSCORER based on the whole (sam-

pled) graph which is more robust than RHSS which relies only

on the local neighborhood of the edge.

Overall, using SEDANSCORER with SEDANSAMPLER per-

forms the best. Among the top 0.2M anomalous edges de-

tected by SEDANSPOT, 82.45% were smurf(ttl), 13.06%
were neptune(ttl) and 2.36% were satan attacks, while

only 0.09% were false positives. In contrast, among the top

0.2M anomalous edges detected by RHSS, 38.6% were

smurf and 4.5% were ipsweep. Notably, over 53.3% of

the flagged edges were false positives, which is unacceptable

in critical applications such as network intrusion detection.
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(a) (b) (c)

Fig. 3. Anomaly detection in DARPA dataset: (a) contributions of SEDANSAMPLER and SEDANSCORER to AUC gains, (b) steps in red curve show that
ground truth anomalous edges occur in bursts, (c) SEDANSAMPLER achieves lower sample ‘corruption’ due to its rate-adjusted reservoir sampling strategy.

Somewhat surprisingly, RHSS did not detect any edge from

neptune attack – the largest attack in DARPA dataset, con-

sisting of 2.1M edges (=46% of total) and recurring multiple

times – as an anomaly. However, this is easily explained:

following the first occurrence of neptune attack, RHSS

increments corresponding edge counts and vertex degrees; thus

subsequent occurrences of neptune edges, which now have

been observed before and connect high degree vertices, are

flagged non-anomalous. On the other hand, SEDANSAMPLER

gives very low priority to neptune edges, which not only

decreases their probability of being included in the sample

but also ensures that they are easily replaced even if they have

been sampled, as stream progresses. Thus, SEDANSPOT suc-

cessfully detects 13% neptune edges among its top 0.2M .

VIII. CONCLUSION

We considered the problem of anomaly detection given a

stream of edges, where anomalies are edges connecting dis-

connected parts of the graph and possibly occurring in bursts.

SEDANSPOT exploited these observations in sublinear memory

by (i) performing rate-adjusted sampling which downsamples

edges from bursty periods of time and (ii) using a holistic

random walk based edge anomaly scoring function to compare

an incoming edge with the whole (sampled) graph. Experi-

ments on real-world datasets demonstrated the benefit of our

anomaly definition and efficacy of the proposed approach in

several scenarios. Future work could explore detecting other

anomalies, e.g., slow or periodic attacks, in a streaming setting.

Further links: (a) Code: www.github.com/dhivyaeswaran/

sedanspot (b) Supplementary (with proofs, extra experiments):

www.cs.cmu.edu/deswaran/papers/icdm18-sedanspot-sup.pdf
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