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Abstract—This document supplements [1] by giving proofs of
theoretical results and details on additional experiments.

I. PROOFS OF THEORETICAL ANALYSIS IN SEC. VI

Proof of Lem. 1: Follows from Proposition 3 of [2].
Proof of Thm. 1: A sampled edge e can belong to Hk in

|Hk| mutually exclusive ways. Hence, Pr [e ∈ Hk | e ∈ S] =∑
e′∈Hk Pr [e = e′ | e ∈ S], which can be simplified using

Bayes’ rule to
∑
e′∈Hk Pr [e = e′ ∧ e ∈ S] /Pr [e ∈ S] ∝∑

e′∈Hk Pr [e′ ∈ S] since Pr [e ∈ S] is independent of k.
Suppose γ1<γ2 . . . <γzk=τk are the anchored time ticks

during interval Ik:=(τk−1, τk]. Let γ0=τk−1 and Eγi be the
set of edges occuring at γi. Then,

∑
e′∈Eγi

Pr [e′ ∈ S] ∝∑
e′∈Eγi

1/r(e′) = γi−γi−1. Thus, Pr [e ∈ Hk | e ∈ S] ∝∑
e′∈Hk Pr [e′ ∈ S] =

∑zk
i=1 γi−γi−1 = τk−τk−1 = `k.

Proof of Lem. 2: O (N/α) comes from the N local ran-
dom walks, each of expected length E [Geometric(α)] = 1/α
(lines 16-22 of Alg. 3). Each step of random walk takes O (1)
due to constant-time neighbor sampling via LAT.

Proof of Lem. 3: The O (log |V|) is a lower bound on the
memory requirement, since each edge (including vertex IDs)
needs to be read. Thus, O (S log |V|) space is needed to store
LAT data structures over the sample of S edges.

Proof of Lem. 4: For i > S, the probability of sampling
the ith edge ei in the stream is pi = r(ei)

−1/
∑i
j=1 r(ej)

−1 ≤
rmax/(i · rmin). The expected number of updates is S +∑L
S+1 pi ≤ S + rmax/rmin

∑L
S+1 1/i, each update costing

O (logS) for sampling and O (davg) for scoring in expectation
(assuming no correlation between edge rate and the degrees
of incident vertices). Amortization completes the proof.

II. ADDITIONAL EXPERIMENTS

Here, we describe our datasets and then answer the follow-
ing from the main paper: Q3) Discoveries: Does SEDANSPOT
lead to interesting discoveries in practice? Q4) Parameters:
How do accuracy and running time depend on S, N and α?

A. Dataset description

DARPA [3] dataset consists of network traffic from 9484
source IPs to 23398 destination IPs over 87.7K minutes. There
are ∼ 4.5M directed <srcIP, dstIP, 1, time> edges in total,
of which 60% are manually annotated as anomalous. They
correspond to 89 network attacks – such as denial of service
or port scan – injected by domain experts. Despite this high
proportion, the attacks themselves occurred infrequently (but

as bursts of activity) and originated from a mix of IP ad-
dresses which either were solely dedicated to attacks, or more
challengingly, attempted camouflage by participating in nor-
mal traffic. This makes DARPA dataset the perfect testbed for
SEDANSPOT, which aims to detect precisely such anomalous
bursts occurring in sparse regions of the graph.

ENRON [4] dataset consists of e-mail communications
among the 151 employees of Enron company from May 1999
to April 2002, a period of three years surrounding the famous
Enron scandal. There are ∼50K directed <sender, receiver, 1,
date> edges. Since ground truth is not directly available, we
verify anomalies by correlating their time stamps with real-
world events. We expect more edges to be flagged anomalous
during periods of large internal (e.g., new CEO) or external
(e.g., updates on lawsuit) changes which create (or result from)
excitement or turbulence among the employees.

DBLP [5] is the collaboration network of authors of papers
from DBLP computer science bibliography. Each undirected
edge <auth1, auth2, 1, pub_year> between two authors rep-
resents a joint publication. For simplicity, we only consider
papers published in 1991-2010 and retain nodes (authors)
who have at least 50 edges, filtering out the remaining nodes
(and corresponding edges). This resulted in a graph containing
around 55.5K authors and 3.7M coauthorships. We expect
anomalous edges to represent unlikely collaborations, e.g.,
authors from unrelated fields or different geographical regions.
We verify anomalies using the public profiles of the authors.

Q3) Discoveries (on ENRON and DBLP datasets)

ENRON: Fig. 1 depicts the anomaly detection results on
ENRON dataset using N=50 walks, α=0.15 restart probability
and S=2K edges in sample. The inset, plotting the distribution
of anomaly scores, showcases a large separation in scores for
anomalies and non-anomalies, which is desirable. Accordingly,
we use the threshold marked in red (=0.76) to flag anomalies1.
The rest of the figure plots the temporal distribution of flagged
edges (aggregated weekly), which we verify by correlating
with the publicly-available ENRON time line2.

The red arrows in Fig. 1 mark the top five non-contiguous
periods of time having the highest number of anomalous edges.
As expected, these periods coincide well with notable events

1In practice, one can use the median µ̂ and inter-quantile range σ̂ of past
scores to flag anomalies, in an online manner, when the score exceeds µ̂+3σ̂.

2http://www.agsm.edu.au/bobm/teaching/BE/Enron/timeline.html



Fig. 1. Anomaly detection in ENRON dataset

surrounding the ENRON scandal, creating a flood of unusual e-
mails from (even low-level) employees: (1) Dec 2000: Skilling
announced as CEO. (2) Jun 2001: The California energy cri-
sis ends. (3) Aug 2001: Skilling announces resignation. Lay
named CEO. (4) Oct-Nov 2001: Fastow ousted. A formal in-
vestigation against Enron is launched. Stocks crumble. Enron
files for bankruptcy. (5) Jan-Feb 2002: Cooper takes over as
CEO after Lay resigns. Fastow, Kopper, Skilling and Watson
(whistle-blower) testify before Congress.

DBLP: We run SEDANSPOT on DBLP with S=200K,
α=0.15 and N=1000. As we show with the help of anecdotal
evidence, the top anomalous edges indeed represent unex-
pected or unlikely collaborations – (i) Alex Galis, Robert Szabo
(2004): This is due a joint invited paper at an IEEE MATA
2004 workshop, which marked the beginning of an unexpected
collaboration between authors of different countries, namely,
Galis from Univ. College London (UK) and Szabo from Bu-
dapest Univ. of Technology and Economics (Hungary). (ii)
Nikol Rummel, Nikolaos Avouris (2007): This is the result
of an interdisciplinary paper about Computer Supported Col-
laborative Learning, requiring collaboration between authors
belonging to different fields (Psychology, ECE). (iii) Ryan
Thibodeau, Mark Carrington (2010): This is the product of
a rare massive collaboration effort among 44 authors across
seven institutions, including Thibodeau from Univ. of Geor-
gia, USA and Carrington from Univ. of Cambridge, UK. This
marks their only joint publication.

Q4) Accuracy and running time w.r.t. parameters

Fig. 2 and Fig. 3 show how accuracy and running time (to
process 0.5M edges) vary with the number of walks N , restart
probability α and sample size S. By default, we use S=10K,
N=100 and α=0.15. All values are averaged over five runs
and error bars indicate standard deviations.

Accuracy w.r.t. α: Fig. 2a shows that the accuracy is ro-
bust (∼ 0.635) to the restart probability α ∈ [0.5, 0.11]. This
is consistent with the trend observed for page rank (closely
related to random walks), where α has little effect on the
top ranking webpages based on their page ranks [6]. W.r.t.
S: Fig. 2b shows that the accuracy exhibits a ‘diminishing
return’ behavior as sample size S is increased in [6K, 20K].
As SEDANSPOT stores more edges, it better models normal
behavior and thus accuracy increases. But the marginal in-
crease itself decreases: once the normal behavior is captured
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Fig. 2. Accuracy w.r.t. parameters
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Fig. 3. Running time w.r.t. parameters

sufficiently well in the sample, subsequent increase in S leads
to little improvement. W.r.t. N : Fig. 2c, somewhat surpris-
ingly, shows that increasing the number of walks N did not
necessarily lead to higher accuracy. In fact, in further exper-
iments, we found that the accuracy peaks around N=10 and
then gradually starts decreasing. A similar pattern has been
observed for tasks like link prediction, where estimates of
RWR relevance scores based on a few walks often outperform
their steady state values [7].

Running time w.r.t. α: Fig. 3b plots the running time
of SEDANSPOT against 1/α, where the restart probability
α ∈ [1/2, 1/9]. The curve begins to flatten out for high values
of 1/α, suggesting that the running time scales sublinearly
with 1/α. This is natural given the finite sample of edges
that SEDANSPOT maintains: even though the expected length
of walks increases linearly with 1/α, many of these walks
terminate early, resulting in a sublinear dependence. W.r.t. S:
Fig. 3c shows that the running time grows very slowly with
sample size S in [128, 16384]. The running time is small for
low S due to premature termination of local random walks
in a small sample of edges (many vertices did not have any
out-edges). W.r.t. N : Fig. 3a shows that SEDANSPOT scales
linearly with N as the points align well on a straight line.
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