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ABSTRACT

Given electrical sensors placed on the power grid, how can we
automatically determine when electrical components (e.g. power
lines) fail? Or, given traffic sensors which measure the speed of
vehicles passing over them, how can we determine when traffic
accidents occur? Both these problems involve detecting change
points in a set of sensors on the nodes or edges of a graph. To this
end, we propose ChangeDAR (Change Detection And Resolution),
which detects changes in an online manner, and reports when and
where the change occurred in the graph.

Our contributions are: 1) Algorithm: we propose novel infor-
mation theoretic optimization objectives for scoring and detecting
localized changes, and propose two algorithms, ChangeDAR-S
and ChangeDAR-D respectively, to optimize them. 2) Theoretical
Guarantees: we show that both methods provide constant-factor
approximation guarantees (Theorems 5.2 and 6.2). 3) Effective-
ness: in experiments, ChangeDAR detects traffic accidents and
power line failures with 75% higher F-measure than comparable
baselines. 4) Scalability: ChangeDAR is online and near-linear in
the graph size and the number of time ticks.
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1 INTRODUCTION

How do we detect change points using sensors placed on a subset
of the nodes or edges of a graph? In the power grid setting, this
question is motivated by the need to quickly detect electrical com-
ponent failures using sensor data. Such failures can occur due to
severe weather, human or equipment failure, or even adversarial
intrusion, and have major costs: estimates [4] suggest that reducing
outages in the U.S. grid could save $49 billion per year and reduce
emissions by 12 to 18%. To achieve this goal, there is a need to use
sensor data to quickly identify in real-time when parts of the grid
fail, so as to quickly respond to the problem. Similarly, in the traffic
setting, a large network of traffic speed detectors spans freeway
systems in major metropolitan areas - our goal is to use them to
automatically detect notable changes, such as traffic accidents.

In both cases, the changes that we wish to detect are highly lo-

calized, both in time and with respect to network structure: power
line failures affect a localized set of power lines due to redirection
of current through neighboring lines, and the same holds for traffic
accidents, which slow traffic in neighboring roads.

An additional challenge is that we want to detect change points
in an online manner: both power grid and traffic data are high-
volume and received in real time, since the data comes from sensors
which are continuously monitoring. This motivates us to develop
fast methods that work in this online setting. When each new data
point is received, the algorithm should update itself efficiently - for
our algorithm, each update requires constant time, and bounded
memory, regardless of the length of the stream.

Thus, our goal is an online, localized change detection algorithm:

Informal Problem 1 (Online Localized Change Detection).

• Given a fixed-topology graph G (e.g. road network or power
grid), and time-series sensor values on a subset of the nodes
and edges of the graph, received in a streaming manner,
• Find change points incrementally, each consisting of a time t
and a localized region of the graph where the change occurred.

Change detection in time-series [11, 34] and graphs [14, 38] has
been studied extensively (expanded in Section 2). Our work differs
in two key aspects. Most work focuses on dynamically evolving
graphs with changing nodes or edges [14, 38]. In our case the graph
topology is fixed, and only sensor values on nodes and edges are
evolving. Second, most work in this area finds the time of a change,
without being able to localize the change to parts of the graph.

Figure 1 shows an example of our method on traffic data. Given a
road graph and the traffic speed over various sensors (indicated by
the nodes in the left plots), our method detected a traffic accident.
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Figure 1: ChangeDAR correctly locates a traffic accident

(red): the 3 time-series on the right show drops in average

speed at 3 consecutive points on a highway. ChangeDAR

outputs the time (red vertical lines) and location (red

nodes) of the change, and we verify the accident against the

traffic report by the California Highway Patrol (blue text at

top-right) [1].

The accident caused a change point (drops in vehicle speed) over
a localized set of sensors (red nodes in the left plots). Our method
exploits the localized nature of this change to accurately detect it,
and outputs both the change time and localization.

Our contributions are as follows:
(1) Algorithm: We propose novel information theoretic opti-

mization objectives for 1) scoring and 2) detecting localized
changes, and propose two algorithms, ChangeDAR-S and
ChangeDAR-D respectively, to optimize them.

(2) Theoretical Guarantees: We show that both algorithms
provide constant-factor approximation guarantees (Theo-
rems 5.2 and 6.2).

(3) Effectiveness: Our algorithms detect traffic accidents and
power line failures in a power gridwith 75% higher F-measure
than comparable baselines in experiments.

(4) Scalability: Our full algorithm is online and near-linear in
the graph size and the number of time ticks (Figure 6).

Reproducibility: our code and data are publicly available at
http://www.andrew.cmu.edu/user/bhooi/changedar.

2 RELATEDWORK

Multivariate Change Detection. [5] reviews time-series change
detection methods. Multivariate change detection methods aim to
segment a time-series into two or more regimes, such as greedy bi-
nary segmentation [34], or slower but exact dynamic programming
(DP) [20]. PELT [22] applies a pruning step to perform DP in linear
time. Other approaches include the Group Fused Lasso (GFL) [7],
Bayesian change detection [3], nonparametric methods [25, 27],
information-theoretic methods [39], support vector machines [13],
and neural networks [26]. These methods do not consider graph
structure, and hence do not detect localized changes.

Change Detection in Dynamic Graphs. Change detection meth-
ods for dynamic graphs, or graphs which change over time, have

been proposed [14, 38]. These include Bayesian methods [31], and
distance-based methods, which define a distance metric on graphs:
based on diameter [15], node or edge weights [30, 32], connectiv-
ity [24], or subgraphs [29]. Except for [30, 32], these do not apply
to our setting, as they assume a changing graph over time, while
we have a fixed graph with sensor values changing over time.

Graph-based Anomaly Detection and Scan Statistics. A number of
methods consider anomaly detection using graph scan statistics [10,
28, 33], which search for a highly anomalous area in static and
temporal graphs. [9] uses coloring to efficiently optimize graph scan
statistics, and [8] incorporates uncertainty in the observed data.
[36] defines the Spatial Scan Statistic while [35] defines the Graph
Fourier Scan Statistic (GFSS), which quantify the spatial locality of
a signal. These methods focus on time intervals containing unusual
activity, while our goal is change detection, which involves a shift
between ‘regimes’ (i.e. generative processes) before and after the
change. In the power grid case, our goal is to detect equipment
failures, which involve a difference in regimes before and after the
failure, but not necessarily a temporal ‘burst’ of activity at any time.

Table 1 summarizes existing change point detection methods.
ChangeDAR differs from existing methods in that it detects local-
ized change points using an online algorithm, and provides theo-
retical guarantees.

Table 1: Comparison of change detection approaches appli-

cable to sensor data on a graph. The last 2 rows refer to auto-

matically detecting the number of changes, and how many

nodes and edges each change affects, respectively.
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Graph-based ✓ ✓

Localization ✓
Online Algorithm ✓ ✓

Provable Guarantees ✓ ✓ ✓
Auto Detect # of Changes ✓ ✓ ✓

Auto Detect Size of Change ✓

3 BACKGROUND

Before delving into the details of our problem statement and pro-
posed algorithms, we briefly review two graph-theoretic concepts
that we will make use of later, namely Prize-Collecting Steiner Tree
(PCST) and Maximum Weight Independent Set (MWIS).

3.1 Prize-Collecting Steiner Tree (PCST)

The prize-collecting Steiner tree problem [6] finds a connected sub-
graph of a graph that maximizes total profit values on the subgraph
nodes while minimizing cost of the edges in the subgraph. Intu-
itively, imagine nodes represent cities, and the cost of each edge is
the cost of building a road between the two cities, and the profit of
a node is the profit from that city joining the road network. Then
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Figure 2: Outline of steps: given a graph with time-series sensors on some nodes and edges, Change Scoring selects the best

subgraph where a change occurred at each time, while Change Detection selects the best subset of change points out of these.

PCST aims to construct a road network to maximize net profit (or
minimize net cost).
• Given a graph G = (V, E) with non-negative node profits
p (v ) ∀ v ∈ V and non-negative edge costs c (e ) ∀ e ∈ E;
• Output a connected subgraph S = (VS , ES ) of G that
minimizes the profit in nodes not chosen, plus the total cost
of edges chosen, i.e. ∑v<VS p (v ) +∑e ∈ES c (e ).

[21] shows that PCST is NP-hard. [6] introduced the PCST prob-
lem and showed a 3-approximation algorithm. [17] proposed a
O (n2 logn) approximation algorithm with a 2 − 1

n−1 factor guaran-
tee, where n is the number of nodes. [19] improved this to a near-
linear time (O (m logn)) 2-approximation algorithm. In our setting,
we will use [19] on a modified graph to find localized change points.

3.2 MaximumWeight Independent Set (MWIS)

The maximum weight independent set problem finds a subset of
nodes of highest weight which has no edges between them.
• Given a graph G with node weightsw (v ) ∀ v ∈ V ;
• Output a set S of nodes with no edges between them maxi-
mizing ∑v ∈S w (v ).

In the offline setting, approximation algorithms exist [18], but in
the online case, [16] showed that no meaningful worst-case guar-
antees are possible. Hence, follow-up work considers non-worst
case analysis [16, 23].

In our setting, we study a constrained variant of the onlineMWIS
problem that arises from our change detection problem, and show
that we can obtain constant worst-case approximation guarantees,
thanks to certain constraints in our setting. We then use this to
obtain theoretical guarantees for multiple change detection.

[9, 33] use PCST for anomaly detection, but to the best of our
knowledge, both PCST and online MWIS have not been used for
change detection.

4 PROBLEM

4.1 Problem Setting

Table 2 shows the symbols used in this paper.

Table 2: Symbols and definitions

Symbol Interpretation

G = (V, E) Input graph
n,m Number of nodes and edges respectively

w Window size
Xv (t ) Sensor value at node v at time t
Xe (t ) Sensor value at edge e at time t

k Number of parameters of time-series model (see Eq. (3))
CF Number of bits needed to store a floating point number

∆v (t ) ‘Bitsave’ score at node v at time t (see Eq. (1))
∆e (t ) ‘Bitsave’ score at edge e at time t (see Eq. (1))
π (v ′) Profit assigned to node v ′
c (e′) Cost assigned to edge e′

r Repetitions of randomized algorithm in ChangeDAR-S

We are given an undirected graph G (e.g. a power grid graph) and
a stream of sensor values associated with the nodes and/or edges of
the graph (e.g. voltage values measured at nodes), as illustrated in
Figure 2. Since some applications involve sensors on nodes while
others involve sensors at edges (e.g. current values measured along
edges), we consider a general framework that allows for both types
of sensors. Some sensors may be missing: hence, if one type of
sensor is not present, we can simply consider their values as missing.
Define Xv (t ) as the sensor value at node v at time t , and Xe (t ) as
the sensor value at edge e at time t .

We consider the sensor values to arrive in an online manner.
However, intuitively, it is unrealistic to decide if a change point
exists at time t given only information up to time t , since we have no
information about what comes after. Hence, we allow for awindow

of w time ticks, in which the algorithm has access to the next w
time ticks before needing to make a decision at time t . In practice,
this means the algorithm reports whether a change occurred at
time t after a lag time ofw time ticks.

Hence, given data up to time t +w , we would like the algorithm
to output if a change occurred at time t . This can be broken down
into two sub-problems: 1) change scoring and 2) change detection.
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Problem 1 (Online Change Scoring).
• Given a graph G = (V, E) and a stream of (possibly missing)
sensor values Xv (t ) and Xe (t ) for each node v , each edge e ,
and time tick t = 1, 2, · · · :
• Output (in an online manner) at time t +w :
– Scoring: a score s (t )measuring our confidence that a change
occurred at time t ;

– Localization: the best subset of nodes and edges S = VS ∪
ES , whereVS ⊆ V and ES ⊆ E, where a change occurred.

The notion of the ‘best’ subset where a change most likely oc-
curred, and the interpretation of the score s (t ), will be formalized
in an information theoretic manner in Section 5.1.

Given these scores, the next sub-problem is to decide which of
these changes actually occurred:

Problem 2 (Online Change Detection).
• Given a graph G = (V, E) and a stream of sensor values
Xv (t ) and Xe (t ) for each node v , each edge e , and time tick
t = 1, 2, · · · :
• Output (in an online manner) at time t +w : whether a change
occurred at time t , and if so, the corresponding subset S (t )
where the change occurred.

Figure 2 provides an outline of our approach.We consider Change
Scoring in Section 5 and Change Detection in Section 6.

5 CHANGE SCORING: CHANGEDAR-S

We now propose an algorithm for Problem 1, for finding the best
subset S and score s (t ) at time t , in an online manner.

5.1 Optimization Objective

We first define our ‘Bitsave’ metric, which intuitively measures how
beneficial (in terms of number of bits we save) it is to add a change
point at time t .

Description Length Framework. First consider the simpler ques-
tion of how to encode a single time-seriesY1, · · · ,Yn . TheMinimum
Description Length (MDL) approach states that given data Y , we
should encode it using themodelM that minimizes the description
length of Y , which is defined as Cost(Y ) = Cost(M ) + Cost(Y |M ),
where Cost(M ) is the number of bits needed to encode the model
M , and Cost(Y |M ) is the number of bits needed to encode the data
given modelM . The full expression for these costs depends on the
type of model used, which we describe as follows.

Model Cost: We use a flexible approach that allows for any
model family to be used for encoding a time-series, e.g. Autoregres-
sion, Seasonal Autoregression etc., resulting in a vector of fitted
values (Ŷi )ni=1. Let k be the number of parameters used: e.g. if we
fit an Autoregressive AR (p) model, then k = p + 1 (the additional
1 is for the intercept). Then the model cost Cost(M ) is the cost of
k floating point values, or k ·CF , where CF is the cost to encode a
floating point number1. A simple default choice (which we use in
our experiments) is to set Ŷi as the mean 1

n
∑n
j=1 Yj for all i , which

has k = 1 parameter, but more complex functions can be used,
particularly when seasonality is present.

1We use CF = 32 for standard 4-byte floats.

Data Cost: For the data cost Cost(Y |M ), we assume that the
errors follow a normal N (0,σ 2) distribution. The log probability
density of the errors Yi − Ŷi under this distribution is

log P (Y1 − Ŷ1, · · · ,Yn − Ŷn ) = log
n∏
i=1

1
√
2πσ 2

e
−

(Yi −Ŷi )
2

2σ 2 (1)

= −
1

2σ 2

n∑
i=1

(Yi − Ŷi )
2 + const. (2)

where ‘const.’ does not depend on the data. By the theory on Huff-
man coding [12], the cost in bits to represent some data under a
given distribution is the negative log-likelihood of the data. Intu-
itively, the less probable a particular outcome is, the more bits we
need to encode it: e.g. encoding the outcome of a coin flip requires
1 bit, but encoding that we rolled a ‘1’ on a fair 8-sided die needs
− log2 1

8 = 3 bits.
Taking the negative of (2), the data cost Cost(Y |M ) is 1

2σ 2
∑n
i=1 (Yi−

Ŷi )
2. Thus the total cost (in bits) of encoding Y is:

Cost(Y1, · · · ,Yn ) = Cost(M ) + Cost(Y1, · · · ,Yn |M )

= k ·CF +
1

2σ 2

n∑
i=1

(Yi − Ŷi )
2 (3)

Note that we are not actually making a strong requirement that
the errors be normal: Eq. (3) simply encodes the data such that
the lower the total squared error, the fewer bits we need. We are
essentially minimizing squared error, with an additional penalty
for the cost of the model, in bits.

Computing Bitsave Scores. We now apply Eq. (3) to the sensor at
node v at time t . Since we are in an online setting, bits saved have
to be computed with respect to a window of sizew . Intuitively, the
bits saved from adding a change at time t is the cost of encoding
Xv from time t −w to t +w , minus the same cost if we were to add
a change at time t :

Definition 1 (Bitsave). The bitsave score from adding a change
at time t at node v is:

∆v (t ) = Cost(Xv (t −w ), · · · ,Xv (t +w ))

− Cost(Xv (t −w ), · · · ,Xv (t − 1))
− Cost(Xv (t ), · · · ,Xv (t +w ))

(4)

The bitsave score for edge e , ∆e (t ), are the same, except using
Xe instead of Xv . For missing sensors, we simply set their bitsave
score to 0 for all t .

Lemma 1. A lower bound for ∆v (t ) (or ∆e (t )) is:

∆v (t ) ≥ −k ·CF (5)

Proof. When adding a change point at time t , the total data cost
cannot increase, since we are allowed to fit the same model to both
sides of the change point. Meanwhile, the model cost increases by
exactly k · CF , since adding one change point adds an additional
set of model parameters, which costs k ·CF bits. □

Localized Change Scoring Objective. The notion of localized changes
captures the fact that in many applications, changes tend to spread
along the graph: e.g. power lines going down affect a connected set
of lines, and traffic congestion affects a connected set of roads. To
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capture this, we stipulate that S, the subgraph of nodes and edges
affected by the change, must be connected in the graph.

Hence, at time t , we want to detect a localized set of nodes and
edges which is a good change point, i.e. provides large total bits
saved. Denote by S = VS ∪ ES the set of nodes and edges we are
searching for, whereVS ⊆ V and ES ⊆ E.

Given subgraph S, the total bitsave by adding a change point at
time t is the sum of ∆ values onS: i.e.∑v ∈VS ∆v (t )+∑e ∈ES ∆e (t ).
Under the MDL framework, we then need to encode S itself. The
simplest way is to encode each of its elements individually: S ⊆
V ∪ E is a subset over m + n elements, so each element takes
log(m + n) bits, or |S| log(m + n) bits in total. In summary, the
optimization objective to find S is:

max

S⊆V
ft (S) =

∑
v ∈VS

∆v (t ) +
∑
e ∈ES

∆e (t ) − |S| log(m + n)

subject to: S is connected
(6)

5.2 Optimization Approach

To solve (6) we rewrite it into an equivalent form that can be op-
timized using the Prize-Collecting Steiner Tree framework, then
solve it in near-linear time with an approximation guarantee of 2.

We first construct a new, bipartite graph G′ = (V ′, E ′): it has a
node v ′ for each v ∈ V , and a node e ′ for each e ∈ E. Then, in G′,
connect v ′ to e ′ iff v is adjacent to e in the original graph G.

For each v ∈ V , assign the node v ′ a profit of π (v ′) = ∆v (t ) +
k · CF . Similarly, for each e ∈ E, assign the node e ′ a profit of
π (e ′) = ∆e (t ) + k ·CF . Finally, assign each edge e ′ ∈ E ′ a cost of
c (e ′) = k ·CF + log(m+n). Intuitively, the profits correspond to bits
saved due to the corresponding sensor, while the costs correspond to
a model complexity penalty in bits due to encoding each additional
node (log(m+n)), as well as the additional set of model parameters
due to the added change point (k ·CF ).

We will show that our optimization objective (6) is equivalent to
the Prize-Collecting Steiner Tree objective in the new graph G′.

min

S′⊆V′
f ′t (S

′) =
∑

v ′<VS′

π (v ′) +
∑

e ′∈ES′

c (e ′)

subject to: S′ is connected
(7)

Let S ⊆ V ∪ E, and define the corresponding S′ to include all
nodes in G′ corresponding to nodes and edges in S, i.e. S′ = {v ′ :
v ∈ VS } ∪ {e

′ : e ∈ ES }.

Lemma 2. The objectives of (6) and (7) are equivalent:

f ′t (S
′) = −ft (S) +C (8)

where C =
∑
v ′∈V′ π (v

′) − k ·CF − log(m + n) is constant w.r.t. S
and S′.

Proof. S′ has 1 node for each node or edge of S, so it has |S|
nodes. Moreover, any optimal S′ must be a tree since any edge in a
cycle in S′ only increases costs without adding any profits. Hence,

S′ has |S| − 1 edges. Then:

f ′t (S
′) =

∑
v ′<VS′

π (v ′) +
∑

e ′∈ES′

c (e ′)

=
∑

v ′<V′
π (v ′) −

∑
v ′∈VS′

π (v ′) + ( |S′ | − 1) (log(m + n) + k ·CF )

= C −
∑

v ′∈VS′

π (v ′) + |S|(log(m + n) + k ·CF )

= C − (
∑

v ∈VS

∆v (t ) +
∑
e ∈ES

∆e (t ) − |S| log(m + n))

= C − ft (S).

□

Moreover, S′ is connected if and only if its nodes form a single
connected component, which is equivalent to S being connected.
In combination with Lemma 2, this implies that minimizing f ′t (S

′)
is equivalent to maximizing ft (S).

Finally, by Lemma 1, we have ∆v (t ) ≥ −k · CF and ∆e (t ) ≥
−k ·CF , which implies that π (v ′) ≥ 0 ∀v ′ ∈ VS′ , so all profits are
nonnegative. The costs, log(m + n) + k ·CF are also nonnegative.
Hence we can solve (7) in near-linear time with approximation
guarantees of 2 using algorithms for Prize-Collecting Steiner Tree
(as reviewed in Section 3.1).

Algorithm 1 gives the full ChangeDAR-S algorithm. We first
convert G to the bipartite G′ (Line 1). Then for each t , we compute
the PCST profits (Lines 4 to 5) and costs (Line 6). We then solve the
resulting PCST problem in G′ (Line 8) to obtain the best subgraph
S′, which we then convert back to a subgraph ofG (Line 10). Finally,
the score s (t ) is the total bitsave of S, defined as ft (S) in (6).

Algorithm 1: ChangeDAR-S change scoring algorithm
Input :Graph G, sensor stream Xv (t ),Xe (t ) over time,

window sizew
Output : For each t , the best change-point localized set S (t ),

and its bitsave score s (t )
1 Convert G to G′ s.t.: (v ′, e ′) ∈ E ′ iff v is adjacent to e in G
2 while sensor values for time tick t +w are received do

3 ▷Compute profits π and costs c
4 π (v ′) = ∆t (v ) + k ·CF
5 π (e ′) = ∆t (e ) + k ·CF
6 c (·) = k ·CF + log(m + n)
7 ▷Solve (7) using Prize-Collecting Steiner Tree
8 S′ = PCST(G′,π (·), c (·))
9 ▷S is the nodes and edges corresponding to S′

10 S (t ) = {v : v ′ ∈ S′} ∪ {e : e ′ ∈ S′}
11 ▷s (t ) is the total bitsave of S
12 s (t ) = ft (S)

5.3 Theoretical Results

Theorem 5.1. Algorithm 1 is online, requiring bounded memory
and linear time.
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Proof. Memory. At time t , the only data we need to store over
time are the sensor values from time t −w to t +w for O (m + n)
sensors, used for computing (1), while takes O (w (m + n)) memory,
which is bounded regardless of the stream length.

Running time. Computing all m + n bitsave scores at time t
takesO (C (m+n)) time, whereC is the time to fit Ŷ in Eq. (2), which
depends on the model family being used. For AR, seasonal AR and
the constant (mean) model, C is (amortized) constant, independent
ofw , as we show in our supplementary document [2]. Then Lines 4
to 12 are linear inm+n, while the PCST step takesO ((m+n) logn)
time. Hence, Algorithm 1 is online, requiringO ((m +n) (C + logn))
per time step, or O (T (m + n) (C + logn)) for T time ticks. □

Theorem 5.2. Algorithm 1 provides an approximation guarantee
of 2 for optimizing (7): letting S′ be the returned set and S∗ the
optimal solution:

f ′t (S
′) ≤ 2 · f ′t (S∗). (9)

Proof. The optimization objective (7) is in the Prize-Collecting
Steiner Tree form. By [19], this can be solved in near-linear time
with an approximation guarantee of 2. □

6 CHANGE DETECTION: CHANGEDAR-D

So far, for each time tick t = 1, 2, · · · , we have found a localized
change at subgraph S (t ), with score s (t ). Our goal now is to decide
which of them are actually change points: i.e. to output, in an
online manner, a set of time ticks {t1, t2, · · · } ⊆ {1, 2, · · · } and
corresponding subsetsS (t1),S (t2), · · · such that a change occurred
in each subset S (ti ) at time ti .

6.1 Optimization Objective

Intuitively, since the scores s (t ) represent bits saved, we want to
pick the best set of time ticks {t1, t2, · · · } ⊆ {1, 2, · · · } maximizing
total bits saved, but without selecting conflicting change points.
Recall that a change point (t ,S (t )) is scored based on its bits saved
in the sensors in S (t ) from time t −w to t +w . This means that
for two change points ti and tj , if their subgraphs S (ti ) and S (tj )
have nonempty intersection, and their time intervals also overlap
(i.e. |ti − tj | ≤ 2w), then these two change points conflict, i.e. they
cannot both be chosen in the final set of changes. In this way we
define the conflict graph:

Definition 2 (Conflict Graph). The conflict graph Gconf =
(Vconf, Econf) has a node for each time tick: {1, 2, · · · }. For ti , tj ∈
{1, 2, · · · }, it has an edge between ti and tj iff the two change points
(ti ,S (ti )) and (tj ,S (tj )) conflict, i.e.:

|ti − tj | ≤ 2w, and |S (ti ) ∩ S (tj ) | > 0.

Our goal is to choose the set of non-conflicting change points
with highest total bitsave. As an optimization objective:

max

T ⊆{1,2, · · · }
д(T ) =

∑
t ∈T

s (t )

subject to: (ti , tj ) < Econf ∀ (ti , tj ) ∈ T
(10)

6.2 Optimization Approach

Objective (10) is equivalent to a Maximum Weight Independent Set
(MWIS) problem, where we put weights of s (t ) on node t , and find
the max weight set which is independent (i.e. has no edges) in graph
Gconf. The key challenge, however, is that we need to optimize (10)
in an onlinemanner in whichwe receive nodes inGconf, alongwith
their weight and conflicting edges, incrementally. As reviewed in
Section 3.2, [16] showed that no meaningful worst-case guarantees
are possible for the general online MWIS problem.

In our case, however, we have a constrained online MWIS prob-
lem: each node can only conflict with the 2w nodes to its immediate
past and future. This turns out to be sufficient for solving the prob-
lem with constant approximation guarantee (treatingw as fixed).

We optimize (10) using a hybrid greedy-randomized approach,
which keeps track of 1 greedy solution, and r randomized solu-
tions, and returns the best solution out of these at each time. The
greedy solution performs better in practice, but the randomized al-
gorithm provides better theoretical guarantees. Hence, performing
both algorithms and returning whichever gives a higher objective
value gives the ‘best of both worlds’ in terms of both empirical
performance and theoretical guarantees.

The full algorithm is given in Algorithm 2. Lines 7 to 13 per-
form a greedy choice: if s (t ) exceeds the score of all its conflicting
neighbors (Line 8), we add t into the greedy set T (0) (Line 10) and
remove all its conflicting neighbors (Line 11). Based on the changes
we made to T (0) , we then update дT (0) (a variable keeping track of
д(T (0) ) i.e. Objective (10)) accordingly (Line 13).

Lines 14 to 22 perform a randomized choice: we sample a uniform
random value ut from 0 to 1 for each time t (Line 16). In the ith
repetition, ifut is greater than the random values of all its neighbors,
we add t to the set T (i ) and remove its neighbors (Lines 19 to 20).
As before we then update дT (i ) accordingly (Line 22).

6.3 Theoretical Results

Theorem 6.1. Algorithm 2 is online, requiring bounded memory
and linear time.

Proof. Memory.At time t , we only need to store the nodes and
edges of Gconf for up to the past 2w time ticks, since all neighbors of
the node at time t are at time t − 2w or later. This requiresO (w ) for
the nodes and at mostO (w2) for the edges. For the randomized part,
we need to store r uniform values for each of these nodes, requiring
O (wr ) memory. Thus the total memory usage is O (w (r +w )). We
show that a constant value of r is sufficient in Theorem 6.2.

Running time. Each iteration of the greedy part takes O (w ) to
visit each neighbor, and O (w ) in the same way for each of the r
repetitions of the randomized part. Hence the overall running time
is O (wr ) per iteration, or O (wrT ) overall for T time ticks. □

Theorem 6.2. Algorithm 2 has constant-factor approximation
guarantee in expectation: letting Tbest be the output of Algorithm 2
and T ∗ be the optimal solution of (7):

E[д(Tbest)] ≥
1

4w + 1д(T
∗) (11)

Proof. Consider a fixed repetition i of the randomized algo-
rithm, at any current time tick t ′. For each node t , t is included in
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Algorithm 2: ChangeDAR-D change detection algorithm
Input :Conflict graph Gconf, window sizew , and change sets

with scores (t ,S (t ), s (t )) as a stream at time
t = 1, 2, · · · from ChangeDAR-S

Output : Set of change points
Tbest = {(t1,S (t1)), (t2,S (t2)), · · · }

1 ▷Change sets T (i ) , and corresponding objective values дT (i )

2 T (i ) = {} ∀ i = 0, 1, · · · , r
3 дT (i ) = 0 ∀ i = 0, 1, · · · , r
4 while node for time tick t +w is received do

5 Nt = {t
′ : (t , t ′) ∈ Econf}

6 ▷Run Greedy and Randomized and choose the best
obtained set:

7 ▷ Greedy : if t ’s score exceeds sum of neighbors’ scores:
8 if s (t ) >

∑
t ′∈Nt s (t

′) then

9 ▷add t into T (0) and remove its neighbors
10 T (0) = T (0) ∪ {t }

11 T (0) = T (0) \ Nt
12 ▷update objective for T (0) based on changes to it
13 дT (0) = дT (0) + s (t ) −

∑
t ′∈Nt s (t

′)

14 ▷ Randomized : over r repetitions:
15 for i in 1 to r do
16 Sample u (i )t ∼ Uniform(0, 1)
17 ▷If t ’s value is greater than its neighbors’ values
18 if u

(i )
t > maxt ′∈Nt u

(i )
t ′ then

19 T (i ) = T (i ) ∪ {t }

20 T (i ) = T (i ) \ Nt

21 ▷update objective for T (i ) based on changes to it
22 дT (i ) = дT (i ) + s (t ) −

∑
t ′∈Nt s (t

′)

23 Output Tbest = argmaxT ∈{T (0), · · · ,T (r ) } дT

T (i ) iff u
(i )
t is greater than its neighbors’ values. Since t can only

be neighbors with the time ticks from t − 2w to t + 2w , it has at
most 4w neighbors. Thus, u (i )t is greater than all its neighbors with
probability ≥ 1

4w+1 .
We next compute the expected value of д(T (i ) ). In the following,

(12) is the definition of д, (13) is by linearity of expectation, (14) is
since t is included with probability ≥ 1

4w+1 , and (15) is since д(T
∗)

is a sum of some subset of the s (·) score values.

E[д(T (i ) )] = E


∑
t ∈T (i )

s (t )


(12)

=

t ′∑
t=1

s (t ) · P (t ∈ T (i ) ) (13)

≥

t ′∑
t=1

s (t )

4w + 1 (14)

≥
1

4w + 1д(T
∗) (15)

□

The guarantee in Theorem 6.2 is a guarantee in expectation, but
can also be converted to a ‘with high-probability’ guarantee:

Theorem 6.3. Algorithm 2 has constant-factor approximation
guarantee with high probability: formally, for any 0 < δ , ε < 1, as
long as we set r ≥ log δ

log( 4w
4w+ε )

, then with probability at least 1 − δ :

д(Tbest) ≥
1 − ε
4w + 1д(T

∗) (16)

Proof. For any i , note that д(T (i ) ) ≤ д(T ∗), and by Theorem
6.2, E[д (T

(i ) )
д (T ∗ ) ] ≥

1
4w+1 . By Markov inequality on the nonnegative

variable 1 − д (T (i ) )
д (T ∗ ) :

P (
д(T (i ) )

д(T ∗)
≤

1 − ε
4w + 1 ) = P (1 − д(T (i ) )

д(T ∗)
≥

4w + ε
4w + 1 ) (17)

≤
1 − E[д (T

(i ) )
p д(T ∗)]

4w+ε
4w+1

(18)

≤
1 − 1

4w+1
4w+ε
4w+1

=
4w

4w + ε (19)

Since д(Tbest) takes the max of r independent repetitions:

P (д(Tbest) ≤
1 − ε
4w + 1 ) = (

4w
4w + ε )

r (20)

≤ δ if r ≥
logδ

log( 4w
4w+ε )

(21)

□

For example, set ε and δ to small constants, e.g. 0.01. Then this
theorem implies that P (д(Tbest) ≥ 0.99

4w+1 ) holds with probability at
least 0.99 as long as r is at least a constant value.

7 EXPERIMENTS

We design experiments to answer the following questions:
• Q1. Change Detection Accuracy: how accurate are the
change times detected by ChangeDAR?
• Q2. Localization Accuracy: how accurate are the change
locations reported by ChangeDAR?
• Q3. Scalability: how does our method scale with data size?

Our code (in Matlab) and data are publicly available at http:
//www.andrew.cmu.edu/user/bhooi/changedar. Experiments were
done on a 2.4 GHz Intel Core i5 Macbook Pro, 16 GB RAM running
OS X 10.11.2. For window sizew , small values around 5 are a good
default, as larger values might miss short-lasting changes. Hence
we use w = 5. We set error variance σ 2 (Eq. (3)) to 0.05 for the
power grid data and 1.5 for the traffic data.

Data. Weuse 4 power grid graphs of different sizes, PolandHVN1,
PolandHVN2, PolandHVN3, and PolandHVN4, which are real power
grids from different parts of the Polish high voltage network [40],
as well as a traffic dataset, TrafficLA [1]. In the power grids, nodes
represent electrical buses, edges represent transmission lines, and
sensors have hourly frequency. TrafficLA [1] consists of the road
network of the ‘Los Angeles and Ventura’ district in California, in
the first week of January 2018. The nodes are traffic sensors that
record the average speed passing through that point within each

Session 4A: Stream Analytics 1 CIKM’18, October 22-26, 2018, Torino, Italy

513

http://www.andrew.cmu.edu/user/bhooi/changedar
http://www.andrew.cmu.edu/user/bhooi/changedar


5 minute interval. The edges of the graph form the road network.
The data also contains traffic incident reports by the California
Highway Patrol, which report the latitude, longitude, time, duration
and description of incidents (e.g. traffic accidents). Dataset details
are in Table 3.

Table 3: Datasets used.

Dataset name Nodes Edges Time Ticks Domain Sensors

PolandHVN1 [40] 2383 2896 480 Power Voltage
PolandHVN2 [40] 2737 3506 480 Power Voltage
PolandHVN3 [40] 3012 3572 480 Power Voltage
PolandHVN4 [40] 3120 3693 480 Power Voltage
TrafficLA [1] 4828 4868 2016 Traffic Speed

7.1 Q1. Detection Accuracy

In this section, we compare ChangeDAR against baseline change
detection approaches, in their accuracy for detecting power line
failures simulated using Matpower [40], a standard power system
simulation program.

Experimental Settings. For each graph, out of 480 time ticks
(hourly data for 20 days) we sample 10 random time ticks as the
times when changes occur. In each such time tick, we deactivate a
randomly chosen edge (i.e. no current can flow over that edge) for
the remainder of the time period. As input to Matpower, we use load
patterns estimated from real data [37] from the Carnegie Mellon
University (CMU) campus for 20 days from July 29 to August 17,
2016, with its standard deviation scaled down by a factor of 10.

Given this input, each algorithm returns a set of time ticks
where it detected a change. We evaluate this using F-measure
( 2·precision·recallprecision+recall ) compared to the true set of anomalies.

Baselines. We compare ChangeDAR to the following change
detection methods:
• Dynamic Graph Change Detection: WeightDist [32] and Ver-
texRank [30].
• Multivariate Change Detection: PELT [22] and Group Fused
Lasso (GFL) [7].
• Graph-based Scan Statistics: Graph Fourier Scan Statistic
(GFSS) [35].

Only our method and VertexRank are online; for VertexRank, the
original algorithm actually requires an offline standard deviation,
but we assume this can be done online as well. We use the offline
version of VertexRank in our experiments.

For WeightDist, we select the ARMA orders using AIC, with an
upper limit of 2 following the original paper [32]. For VertexRank
we use a threshold of 2 standard deviations, following the original
paper [30]. GFL and GFSS require the number of changes as input:
we pass in the true number of changes. For GFL we use the default
LARS (Least Angle Regression) approach. For GFSS, we preprocess
by converting the time series to adjacent differences over time,
and set ρ as the 5th-percentile smallest eigenvalue, following the
original paper [35].

Results. Figure 3 shows an example of a power failure cor-
rectly detected, shown by the blue cross. This change causes cas-
cading effects in the voltage levels in the surrounding nodes, which
ChangeDAR is able to detect (red circles). We evaluate the set

   
   

   

   

   

   

   

   

   

   

   

   
   

   

   

         

   

   

   

   
   

      

   

   

   

         
   

         

   
   

   

   
   

   
      

   

      

   

   
   

   
   

      

   

   

   

   
   

   

      
   

   
   

   

   
   

   

   

   

      

      
   
   

   

   

   
   

   

   

   
   

   
   

      

   

   
   

   
      
      

   

   
   

   

   

   
   

   

   

   

      

   
   

      

   
   

   
   

   

      

   

      

      

   
      

   

      

   
   

   
   

      

      

      

   

   

      

      

      

   

      

      

   

   

         

   

   
   

   

         

   
   

   
   

      
            

         
   

   

   

   

   

   

   

   

   

   

   
   

   

      
   

   

   

   

   

   

   

   

   

   

      

   

   

   

   

   

   

   

   

   
   

   

   

   
      

   

   

      

   
      

   

   

   

      

   

   
   

   

   

   

   

   

   

   

   

   

      

   

   
      

   

   

   
   

   
   

   

   

   

   

   

   

   
   

   

   

      

   

   
      

      

   
   

   

      
   

   
   

   

      
   

   

   
   

   

   
   
   

   

   

   

      

   

   

   

   

   

   

      

   

      

   
      

   

   

   

   

   

   

   

   

      
      

   

   

   

   

   

   

   
   

   

   

   
   

   

   
   

   

   

   

   

            

   

   

   

   

   
   

   
   

   
   

   

   
   

   

   

   

   

      

      

   

   

   

   

   

   

   

   

   

   

   

   

   

   
   

   
   

      

   

   

   

   

   

   

   
      

   

   

   

   

   

   

      

   
   

   

   

   

   

         

   

   
   

   

   

   

   

   

   

      

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

      

   
         

      

      

               
   

   

   
   

      

   
   

   

   

   

   

   

   

   

   
   

   

   
   

   

   

         

   

   

         

   

   

   
      
   

   

   
      

         

   
   

   
   

   
   

   
   

   

   
   

   

   
   

   

   

   

   

   

   
   

   

   

   

      

   

      

   

   

   
   

   
      

   

   

   

   
   

   

   

   

   

   

   
   

   

   
      

   

      

   

      

   
   

   

   

   
      

      

   

   

      

   

   

   
   

      
      

   

   

   

   

      

      

   

   

   

   
   

   

      

   

   

   

   

   

   

   

   

   
         

      

   

   

   

   

   
   

   
                  

      

   

   

   

   

   

   

   

         
      

      
   

            

   

   

      

   

   
   

   
      

      

      

   

   

   

   

   

   

      

      

   

   

   

   

   

   

   

   

   

   

   

   
   
   

   

      
         

   

   

      

   

         
         

   

   
   

   

   

         

   

   
   

   

   

   

   

   

   

   
   

      

   
   

   

   

   

   
      

   
   

   

   
   

   

   

   

      

   

   

   

   
         

   

   
   

   

   

   
   

   

   

   

      
   

   

   

   
   

      

   

   
   

   

   

   

   

   

      

   

   

   

   

   

   

   

   

   
   

      

   

   

      

            

   

   

   

   

   
   

      

      

      

   

   

   
   

   

   

   

      

   

            

      

   

   
   

   

   

   

   

   

      

   

   
   

   

      

   

   

   

   
   

   
      

   

   

      

   

   

   

   

   

   

   

   

   

   

   
   

   

   

   
   
   

   

   

   

   

   

   

   
   

      

      

   

      

         

   
      

   

      

   

      

      

   

   

   

      

   

   

   

      

   

   
   

      

   
   

      
   

   

      

   

   

   

   

   

      

   

      

      

   
         

      

      

   
   

   
      

         

      

      

   

      

      

   

      

   

   

         

   

   
   

      
   

      
   

   
   

   

   

   

      

      

      

   

   
   

   
   

   

   

   

   

   

   
      

   

   

   

   

   

      

   
   

   

   
   

   
   
   

   

   

   

   

   
   

         

   

   

   

            

   

      

   

      
   

   
   

   

   
   

         

            

   

      

      

   

   
   

   

   

   

      

   

   
   

   

   

   

      

   
      

         

      

   

   

   
   

   

         

   
   

   

   

   

   

   

         
      

   

   
   

      

         

   

   

   

   

   

   
   

   
   

   
   

   

      

   

   
   
   

   

   
   

   

   

   

   

   

      

      

   

   

      

   

   

      

   

   

   

   
   

   

   

   

   
   

      

   
   

   

   

   

   
   

   
   

   
   

   
   

   

   

   

   

   

   

   

   

   
   

   
   

      

   

   

   

   

         

   

   

   

   

   

      

   

   

   
   

   
   

   
   

         
   

   

   

      
   

      

      
   

   

   

   

      

   

   
   

   

            

   
   

      

   

   

   

   

   
         

   
   

   
      

   
   
      

   

      

         

   

   

   

   
   

      

   
   

      

   

   

   

   

   
   

      
      

   

   

   

   

      

   

   

   

   

      
   

   

   
   

   

      

   

   

      

      

   

   

   

   
   

   
   

   

      
   

   

   

      

            
   

      
   

   

   

   
   
   

      

   

   

   

   

   

      

   

   

   

   

   

   

   

      

      

   

   

   

   
   

   

   
   

      

   

   

   
   

   

      

   

   

   

   

      

   

   

   

   
   

   
   

   

   
   

   
      

   

   
   

   

   

   

      

      

   

   

   

      

      

   

   

      

      

   

   

   

   
      

   

   

   

   

   

   

      
   

   

      

   

         

   

      

      

   

               

         

   

   

            

   

   

   
   

   
      

   
   

   
   

   

   

   

   
   

      

   

   
         

      

      

   

   

   

         

      

   

   

   

   
   

      

   
         

            

   

   

   
   

   

   

      
   

   

   

         
   

   

   

   

      
   

         
   

   

   

   

   

   
      
   

   

   

   
   

   
   

      
   

   

   

   

   
   

      

      

   

   
   

   
   

   

   

   
   

      

   

      

   

   

   
      
   

   

   

   
      

      

   

   
      

   

   

   

   

   

   

   
   

   

   

   

   
   

   
      

   

   

   

   

   

         

   

   

   

   

      

   

   

   

   

   

         

      

   

   
   

   

      

   

   

   

   

   

   

   

      
      

   

      

   

   

   

   

   

      

      

   

   

   

   

   

   
   

   

   

   

   

   

   

      

      

   

      

   

   

   
      

   

   

   

   
      

         

   

      

   

   

   

   

   

   

      

      

   

   

   

   

   
   

   

   

   

      
   

   
   

      

   

   

   

      

   

   

   
   

   

      

   
   

   

   

   

      

   

   

   

   

   

   
   

      

   
   

   

   

   

      

   
   

   

   

      
   

   

   

   

   

   

   
   

   
   

   

      

      
            

   

   

   
   

      

   

   
   
   

   
   

   

   

   

      
   

   

   
   

   

   

      

   

   

   

      

   

   

   

   

   

   

            

      

   

   
      

   

   

      

   

   

   
   

   

   

   

   

   

   

   

   

      

   

   
   

   

   

   

   

      

   

   
   

   

   

   

   
   

   

   

   

   
   

   

   

   
   

   

      

   

      

   

   
   

   

   

   
   

   

      

      

   
   

   
   

      

   

      

      

         

      

      

   

   
      

      

   
   

   

   

   

   

   
   

      

   

   
   

   

   

      

   

   

   

   

   

      

   

   

   

   

   

   

   
   

   

   

   

   

   

   

   

   

   

   
   

   

   
   

   
   

   
   

   
      

   

   

   

   

   

   
   

   

   

   

   

   

   

      

   

   

   

   

   

   
   

      

   

   

   
   

      

   

   

   

   

   

   

   

   

   
   

   

   

   

   

                           

   

   

   

   

   

   

      
   

   

   

   

   

      

      

   

   
   

   

   

   
      

   

   

   

   

   
      

   
   

   

   

   

   

      

   

   

   

   
   

   

   

   

   
   

   

   

   

   

   
   

   

   

   

   

   

   

   

   

   

   

   

   

      

   

   

   

   

   

   

      

      

   

   

   

   

   

         

   

   

   

   

   

   

   

   

         
   

   

   

   

   
   

   

   
   

   

   
   

   

   

   

         

   

   

   

   

   
   

   

   

   

   
   

      

   

   

   
   

   

   

   

   

   
   

   

   

   
   

   
   
   

      

   
      

   

   
   

   
   

         

   
   

   
   

   

   

      

   

      
   

   

         
   

   

   

   

   

   

   

      
   

   

   

   

   
   

   

   

   
   

   
   

   

   

   

   

   
   

   
      

   

   

   

         

   

      

   
   

      

   

   

   

   

   
   

   

   

   

   

   

   

   

   

   

   

   

   

   
   

   
   

   

   

      

   
   

   

      

   

   

   

   

   

   

   

   

   
         

   

   

   

   

   

         
   

   

   

   

   
   

   

      

   

   

   

   
   

      

   

      

   

   

   

   

   
   

   

   

   

   

   

   
   

   

   

   

      
   

   

   
      

   

   

   

   

   

   

   

   

   

   
   

   

   

      

      

   

      
      

   

   
   

   

   

   

   

         

   

   
   

   

      
   

   

   

   

   
   

   

   

   
   

      

   

   
   

      

   

   
   
   

   

   

   

   

      

   

   

   
      

   

   

   

   

      

   

      
   

   

   

   

   

   

   

      

   

   

   

   

   

      

   

   

   

   

      

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   
      

   
   

   

   

   

      

   

   

   
   

   

   

   
   

   

   

   

      
   

Figure 3: ChangeDAR correctly detects a power failure: the

blue cross shows a power line failure, causing cascading ef-

fects in surrounding voltage levels, which are detected as a

localized change-point by ChangeDAR (red circles).

of change times output by each method against the ground truth
values using F-measure on the 4 datasets in Figure 4a to 4d. The
results show that ChangeDAR outperforms the baselines by 75%
or more. Since only ChangeDAR detects changes that are localized
in the graph and persist over a period of time, this suggests that
combining graph and temporal structure in this way is effective.
Note that this occurs despite the baselines (other than VertexRank)
being offline algorithms, while our method is online.

7.2 Q2. Localization Accuracy

We evaluate ChangeDAR in detecting and locating traffic accidents
in the TrafficLA data. Figure 1 shows a traffic incident reported
in the incident report as a traffic collision at 5.30pm on Jan 3 2018.
ChangeDAR reported a localized change at the time shown by
the red vertical line and at the three stations marked in red, all of
which experienced sharp drops in average speed shortly after the
accident.

We now evaluate the accuracy of ChangeDAR against the ground
truth traffic accidents, compared to the same set of baselines (with
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Figure 4: ChangeDAR accurately detects power line failures:

F-measure of detecting transmission line failures compared

to (mostly offline) baselines.

the same settings as before). Since none of the baselines perform
localization (i.e. returning the location of an anomaly), for each
change point returned by a baseline, we select the sensor with the
largest negative change in speed at that time as the detected lo-
cation. We only consider negative changes since traffic accidents
should only result in decreases in vehicle speed.

The ground truth accidents come from incident reports by the
California Highway Patrol. Each incident is accompanied by its
occurrence time and location. We use all events listed as traffic
collisions with duration at least 1 hour. For each change reported
by an algorithm, we match it to a ground truth incident if the two
occurred at most 1 hour apart, and the mean location among the
algorithm’s detected nodes is at most ‘radius’ away from the true
location, for the values of ‘radius’ plotted on the x-axis of Figure 5.

Figure 5 shows that ChangeDAR outperforms the same baselines
in precision and recall of locating traffic accidents, by 70% and 227%
respectively, and F-measure by 124%. The fairly low precision and
recall of all methods occurs because many traffic accidents do not
lead to any discernible change in vehicle speed, and conversely,
traffic slowdowns may be caused by regular congestion or events
that are not reported as traffic accidents.
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Figure 5: ChangeDAR accurately locates traffic accidents:

ChangeDAR outperforms baselines in precision (left) and

recall (right) on ground truth traffic accidents. The x-axis

plots the radius used to determine whether a change point

output by each algorithm matches a ground truth accident.

7.3 Q3. Scalability

Finally, we verify that ChangeDAR scales linearly in the number of
time ticks and the number of edges in the graph. Figure 6a plots the
wall-clock time taken for ChangeDAR to run on the TrafficLA
dataset, varying the number of time ticks from 10%, 20%, · · · , 100%
of the full number of time ticks. For Figure 6b we construct subsets
of nodes by taking the 10%, 20%, · · · , 100% of nodes with lowest
geographical latitude, and run ChangeDAR on the induced sub-
graphs of these subsets. Subsetting via latitude is done to prevent
the graph from separating into a large number of connected com-
ponents. Figures 6a and 6b show that ChangeDAR scales linearly
in both dimensions.

ChangeDAR is fast, taking 10ms on average to run on each time
tick on our largest (TrafficLA) graph, with 4828 sensor values per
time tick.
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Figure 6: ChangeDAR scales linearly: wall-clock time of

ChangeDAR against (a) number of time ticks and (b) num-

ber of edges.

8 CONCLUSION

In this paper, we propose online algorithms for detecting localized
changes for sensor data on a graph. This type of data occurs in many
settings: e.g. power grid monitoring, traffic, climate, disease surveil-
lance, and monitoring users on social networks. Our approach uses
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PCST and online MWIS, which to the best of our knowledge, have
not been used for change detection. Our contributions are:

(1) Algorithm: We propose novel information theoretic opti-
mization objectives for 1) scoring and 2) detecting localized
changes, and propose two algorithms, ChangeDAR-S and
ChangeDAR-D respectively, to optimize them.

(2) Theoretical Guarantees: We show that both algorithms
provide constant-factor approximation guarantees (Theo-
rems 5.2 and 6.2).

(3) Effectiveness: Our algorithms detect traffic accidents and
power line failures in a power grid with 75% or more higher
F-measure than comparable baselines in experiments.

(4) Scalability: Our full algorithm is online and near-linear in
the graph size and the number of time ticks (Figure 6).
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